Selection among site-dependent structurally constrained substitution models of protein evolution by approximate Bayesian computation

Motivation The selection among substitution models of molecular evolution is fundamental for obtaining accurate phylogenetic inferences. At the protein level, evolutionary analyses are traditionally based on empirical substitution models but these models make unrealistic assumptions and are being su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) Jg. 40; H. 3
Hauptverfasser: Ferreiro, David, Branco, Catarina, Arenas, Miguel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Oxford University Press 04.03.2024
Oxford Publishing Limited (England)
Schlagworte:
ISSN:1367-4803, 1367-4811, 1367-4811
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivation The selection among substitution models of molecular evolution is fundamental for obtaining accurate phylogenetic inferences. At the protein level, evolutionary analyses are traditionally based on empirical substitution models but these models make unrealistic assumptions and are being surpassed by structurally constrained substitution (SCS) models. The SCS models often consider site-dependent evolution, a process that provides realism but complicates their implementation into likelihood functions that are commonly used for substitution model selection. Results We present a method to perform selection among site-dependent SCS models, also among empirical and site-dependent SCS models, based on the approximate Bayesian computation (ABC) approach and its implementation into the computational framework ProteinModelerABC. The framework implements ABC with and without regression adjustments and includes diverse empirical and site-dependent SCS models of protein evolution. Using extensive simulated data, we found that it provides selection among SCS and empirical models with acceptable accuracy. As illustrative examples, we applied the framework to analyze a variety of protein families observing that SCS models fit them better than the corresponding best-fitting empirical substitution models. Availability and implementation ProteinModelerABC is freely available from https://github.com/DavidFerreiro/ProteinModelerABC, can run in parallel and includes a graphical user interface. The framework is distributed with detailed documentation and ready-to-use examples.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1367-4803
1367-4811
1367-4811
DOI:10.1093/bioinformatics/btae096