A two-stage stochastic programming model for the optimal design of distributed energy systems

► The optimal design of distributed energy systems under uncertainty is studied. ► A stochastic model is developed using genetic algorithm and Monte Carlo method. ► The proposed system possesses inherent robustness under uncertainty. ► The inherent robustness is due to energy storage facilities and...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 103; pp. 135 - 144
Main Authors: Zhou, Zhe, Zhang, Jianyun, Liu, Pei, Li, Zheng, Georgiadis, Michael C., Pistikopoulos, Efstratios N.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.03.2013
Elsevier
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:► The optimal design of distributed energy systems under uncertainty is studied. ► A stochastic model is developed using genetic algorithm and Monte Carlo method. ► The proposed system possesses inherent robustness under uncertainty. ► The inherent robustness is due to energy storage facilities and grid connection. A distributed energy system is a multi-input and multi-output energy system with substantial energy, economic and environmental benefits. The optimal design of such a complex system under energy demand and supply uncertainty poses significant challenges in terms of both modelling and corresponding solution strategies. This paper proposes a two-stage stochastic programming model for the optimal design of distributed energy systems. A two-stage decomposition based solution strategy is used to solve the optimization problem with genetic algorithm performing the search on the first stage variables and a Monte Carlo method dealing with uncertainty in the second stage. The model is applied to the planning of a distributed energy system in a hotel. Detailed computational results are presented and compared with those generated by a deterministic model. The impacts of demand and supply uncertainty on the optimal design of distributed energy systems are systematically investigated using proposed modelling framework and solution approach.
Bibliography:http://dx.doi.org/10.1016/j.apenergy.2012.09.019
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0306-2619
1872-9118
DOI:10.1016/j.apenergy.2012.09.019