Forward–backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators

In this paper, we construct a forward–backward splitting algorithm for approximating a zero of the sum of an α -inverse strongly monotone operator and a maximal monotone operator. The strong convergence theorem is then proved under mild conditions. Then, we add a nonexpansive mapping in the algorith...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Arabian Journal of Mathematics Ročník 9; číslo 1; s. 89 - 99
Hlavní autori: Dadashi, Vahid, Postolache, Mihai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2020
Springer
Springer Nature B.V
Predmet:
ISSN:2193-5343, 2193-5351, 2193-5351
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we construct a forward–backward splitting algorithm for approximating a zero of the sum of an α -inverse strongly monotone operator and a maximal monotone operator. The strong convergence theorem is then proved under mild conditions. Then, we add a nonexpansive mapping in the algorithm and prove that the generated sequence converges strongly to a common element of a fixed points set of a nonexpansive mapping and zero points set of the sum of monotone operators. We apply our main result both to equilibrium problems and convex programming.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2193-5343
2193-5351
2193-5351
DOI:10.1007/s40065-018-0236-2