Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions

The main objective of this paper is to provide new explicit criteria to characterize weak lower semicontinuous Lyapunov pairs or functions associated to first-order differential inclusions in Hilbert spaces. These inclusions are governed by a Lipschitzian perturbation of a maximally monotone operato...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis Vol. 75; no. 3; pp. 985 - 1008
Main Authors: Adly, S., Hantoute, A., Théra, M.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Ltd 01.02.2012
Elsevier
Subjects:
ISSN:0362-546X, 1873-5215
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main objective of this paper is to provide new explicit criteria to characterize weak lower semicontinuous Lyapunov pairs or functions associated to first-order differential inclusions in Hilbert spaces. These inclusions are governed by a Lipschitzian perturbation of a maximally monotone operator. The dual criteria we give are expressed by means of the proximal and basic subdifferentials of the nominal functions while primal conditions are described in terms of the contingent directional derivative. We also propose a unifying review of many other criteria given in the literature. Our approach is based on advanced tools of variational analysis and generalized differentiation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2010.11.009