Learning 3D Shape Completion Under Weak Supervision

We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are either data-driven or learning-based: Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations; Le...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer vision Ročník 128; číslo 5; s. 1162 - 1181
Hlavní autoři: Stutz, David, Geiger, Andreas
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2020
Springer
Springer Nature B.V
Témata:
ISSN:0920-5691, 1573-1405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are either data-driven or learning-based: Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations; Learning-based approaches, in contrast, avoid the expensive optimization step by learning to directly predict complete shapes from incomplete observations in a fully-supervised setting. However, full supervision is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, i.e., learn , maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. On synthetic benchmarks based on ShapeNet (Chang et al. Shapenet: an information-rich 3d model repository, 2015 . arXiv:1512.03012 ) and ModelNet (Wu et al., in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2015 ) as well as on real robotics data from KITTI (Geiger et al., in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2012 ) and Kinect (Yang et al., 3d object dense reconstruction from a single depth view, 2018 . arXiv:1802.00411 ), we demonstrate that the proposed amortized maximum likelihood approach is able to compete with the fully supervised baseline of Dai et al. (in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2017 ) and outperforms the data-driven approach of Engelmann et al. (in: Proceedings of the German conference on pattern recognition (GCPR), 2016 ), while requiring less supervision and being significantly faster.
AbstractList We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are either data-driven or learning-based: Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations; Learning-based approaches, in contrast, avoid the expensive optimization step by learning to directly predict complete shapes from incomplete observations in a fully-supervised setting. However, full supervision is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, i.e., learn , maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. On synthetic benchmarks based on ShapeNet (Chang et al. Shapenet: an information-rich 3d model repository, 2015. arXiv:1512.03012 ) and ModelNet (Wu et al., in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2015) as well as on real robotics data from KITTI (Geiger et al., in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2012) and Kinect (Yang et al., 3d object dense reconstruction from a single depth view, 2018. arXiv:1802.00411 ), we demonstrate that the proposed amortized maximum likelihood approach is able to compete with the fully supervised baseline of Dai et al. (in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2017) and outperforms the data-driven approach of Engelmann et al. (in: Proceedings of the German conference on pattern recognition (GCPR), 2016), while requiring less supervision and being significantly faster.
We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are either data-driven or learning-based: Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations; Learning-based approaches, in contrast, avoid the expensive optimization step by learning to directly predict complete shapes from incomplete observations in a fully-supervised setting. However, full supervision is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, i.e., learn , maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. On synthetic benchmarks based on ShapeNet (Chang et al. Shapenet: an information-rich 3d model repository, 2015 . arXiv:1512.03012 ) and ModelNet (Wu et al., in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2015 ) as well as on real robotics data from KITTI (Geiger et al., in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2012 ) and Kinect (Yang et al., 3d object dense reconstruction from a single depth view, 2018 . arXiv:1802.00411 ), we demonstrate that the proposed amortized maximum likelihood approach is able to compete with the fully supervised baseline of Dai et al. (in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2017 ) and outperforms the data-driven approach of Engelmann et al. (in: Proceedings of the German conference on pattern recognition (GCPR), 2016 ), while requiring less supervision and being significantly faster.
We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are either data-driven or learning-based: Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations; Learning-based approaches, in contrast, avoid the expensive optimization step by learning to directly predict complete shapes from incomplete observations in a fully-supervised setting. However, full supervision is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, i.e., learn, maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. On synthetic benchmarks based on ShapeNet (Chang et al. Shapenet: an information-rich 3d model repository, 2015. arXiv:1512.03012) and ModelNet (Wu et al., in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2015) as well as on real robotics data from KITTI (Geiger et al., in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2012) and Kinect (Yang et al., 3d object dense reconstruction from a single depth view, 2018. arXiv:1802.00411), we demonstrate that the proposed amortized maximum likelihood approach is able to compete with the fully supervised baseline of Dai et al. (in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2017) and outperforms the data-driven approach of Engelmann et al. (in: Proceedings of the German conference on pattern recognition (GCPR), 2016), while requiring less supervision and being significantly faster.
We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are either data-driven or learning-based: Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations; Learning-based approaches, in contrast, avoid the expensive optimization step by learning to directly predict complete shapes from incomplete observations in a fully-supervised setting. However, full supervision is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, i.e., learn, maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. On synthetic benchmarks based on ShapeNet (Chang et al. Shapenet: an information-rich 3d model repository, 2015 (See CR8). arXiv:1512.03012) and ModelNet (Wu et al., in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2015 (See CR94)) as well as on real robotics data from KITTI (Geiger et al., in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2012 (See CR24)) and Kinect (Yang et al., 3d object dense reconstruction from a single depth view, 2018 (See CR97). arXiv:1802.00411), we demonstrate that the proposed amortized maximum likelihood approach is able to compete with the fully supervised baseline of Dai et al. (in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2017 (See CR15)) and outperforms the data-driven approach of Engelmann et al. (in: Proceedings of the German conference on pattern recognition (GCPR), 2016 (See CR19)), while requiring less supervision and being significantly faster.
Audience Academic
Author Geiger, Andreas
Stutz, David
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0002-6286-1805
  surname: Stutz
  fullname: Stutz, David
  email: david.stutz@mpi-inf.mpg.de
  organization: Max Planck Institute for Informatics
– sequence: 2
  givenname: Andreas
  surname: Geiger
  fullname: Geiger, Andreas
  organization: Max Planck Institute for Intelligent Systems and University of Tübingen
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnjxszcduNnss9atQEKzFY4ibSU1ts2uyFfvvTVlBKihzmGF4n_l4B6jnagcInRM8IhgXV4EQylmKiUj3Vbo7Qn2SFywlGc57qI9LitOcl-QEDUJYYYypoKyP2AyUd9YtE3adzF9VA8mk3jRraG3tkoXT4JNnUG_JfNuA_7Ahtk_RsVHrAGffeYgWtzdPk_t09nA3nYxnaZUx2qaZ0ZoQkVOtczCaay60qYggmmbAea4wVkX2okRRUKNyVhrBc60U6NIUDAwbootubuPr9y2EVq7qrXdxpaTxx4LF4WVUjTrVUq1BWmfq1qsqhoaNraJLxsb-mFNaMkEFj8DlARA1LXy2S7UNQU7nj4da0mkrX4fgwcjG243yO0mw3BsvO-NlNF7uK7mLTPGLqWyr9n7Gw-z6X5J2ZIhb3BL8z8N_Q1_BFJfa
CitedBy_id crossref_primary_10_1109_TGRS_2022_3220198
crossref_primary_10_1109_ACCESS_2019_2923842
crossref_primary_10_1049_cvi2_12111
crossref_primary_10_1016_j_gmod_2019_101030
crossref_primary_10_3390_electronics11213551
crossref_primary_10_1007_s10489_022_04219_3
crossref_primary_10_7554_eLife_80918
crossref_primary_10_3390_s19071553
crossref_primary_10_1007_s10723_022_09610_5
crossref_primary_10_1109_TII_2020_3044106
crossref_primary_10_1145_3658236
crossref_primary_10_3390_rs15174163
crossref_primary_10_1016_j_compag_2025_110121
crossref_primary_10_1145_3550454_3555470
crossref_primary_10_3390_s22186774
crossref_primary_10_1016_j_eswa_2023_120723
crossref_primary_10_1016_j_jag_2021_102504
crossref_primary_10_1109_TVCG_2023_3342119
crossref_primary_10_1145_3491224
crossref_primary_10_1016_j_gmod_2023_101173
crossref_primary_10_1109_TVCG_2024_3507013
crossref_primary_10_1007_s00371_021_02192_5
crossref_primary_10_1109_TPAMI_2022_3186876
crossref_primary_10_1016_j_isprsjprs_2023_10_009
crossref_primary_10_1016_j_cag_2024_104104
crossref_primary_10_1007_s11263_020_01367_2
crossref_primary_10_1016_j_neucom_2020_10_089
crossref_primary_10_1007_s11263_023_01820_y
crossref_primary_10_1111_cgf_14603
crossref_primary_10_1145_3603544
crossref_primary_10_3390_app12094581
crossref_primary_10_1109_TPAMI_2021_3095302
crossref_primary_10_1109_LRA_2020_3000851
Cites_doi 10.1109/3DV.2016.32
10.1007/978-3-319-46484-8_38
10.1109/CVPR.2014.59
10.1109/CVPR.2016.586
10.1109/ISMAR.2011.6162880
10.1111/cgf.12573
10.1007/978-3-319-45886-1_18
10.1016/j.cviu.2010.11.019
10.1109/CVPR.2011.5995687
10.1007/978-3-319-24947-6_16
10.1007/978-3-319-46723-8_49
10.1109/TPAMI.2018.2868195
10.1109/CVPRW.2015.7301358
10.1109/CVPR.2017.30
10.1007/978-3-319-10602-1_48
10.1109/ICCV.2017.230
10.1109/HUMANOIDS.2012.6651593
10.1109/CVPR.2016.401
10.1109/CVPR.2015.7299044
10.1109/ICCV.2005.221
10.1109/CVPR.2018.00306
10.1109/ICCVW.2017.86
10.1109/ICCV.2017.19
10.1007/978-3-642-34141-0_16
10.1145/2816795.2818094
10.1109/CVPR.2018.00209
10.1109/3DV.2017.00054
10.1109/34.121791
10.1109/CVPR.2014.89
10.1109/CVPR.2012.6248074
10.1109/TPAMI.2013.87
10.1109/CVPR.2015.7299105
10.1007/978-3-319-46466-4_29
10.1007/978-3-319-10599-4_41
10.1109/ICCV.2015.304
10.1109/CVPR.2014.470
10.1007/978-3-540-74272-2_1
10.1109/CVPR.2017.701
10.1145/1360612.1360642
10.1109/CVPR.2013.167
10.1109/TPAMI.2010.162
10.1109/CVPR.2014.487
10.1109/ICCV.2017.252
10.1109/CVPRW.2009.5206738
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2015.7298863
10.1109/CVPR.2015.7298925
10.1109/IROS.2017.8206060
10.1109/3DV.2017.00017
10.1145/237170.237269
10.1007/978-3-319-46466-4_22
10.1109/CVPRW.2009.5206842
10.1007/978-3-319-49409-8_20
10.1109/CVPR.2013.170
10.1007/978-3-319-10605-2_6
10.1109/CVPR.2016.612
10.1109/CVPR.2017.264
10.1109/ICCV.2013.405
10.1109/CVPR.2015.7298807
10.1109/WACV.2017.51
10.1145/37401.37422
10.15607/RSS.2015.XI.001
10.1109/CVPR.2017.693
10.1109/ICCV.2017.327
10.1109/CVPR.2018.00411
10.1609/aaai.v31i1.10777
10.1109/3DV.2018.00068
10.1007/978-3-642-37331-2_45
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2020 Springer
The Author(s) 2018.
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2020 Springer
– notice: The Author(s) 2018.
DBID C6C
AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-018-1126-y
DatabaseName Springer Nature Open Access Journals
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 1181
ExternalDocumentID A622938286
10_1007_s11263_018_1126_y
GrantInformation_xml – fundername: Max Planck Institute for Informatics
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c432t-4fdd11852dd5efd6d68dfc181d24e665a00a74ba8772fa539f865daaed9f73ef3
IEDL.DBID RSV
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531431500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Tue Nov 04 23:14:55 EST 2025
Sat Nov 29 10:04:42 EST 2025
Wed Nov 26 10:38:43 EST 2025
Tue Nov 18 22:23:45 EST 2025
Sat Nov 29 06:42:27 EST 2025
Fri Feb 21 02:35:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Benchmark
3D reconstruction
Weakly-supervised learning
3D shape completion
Amortized inference
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-4fdd11852dd5efd6d68dfc181d24e665a00a74ba8772fa539f865daaed9f73ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6286-1805
OpenAccessLink https://link.springer.com/10.1007/s11263-018-1126-y
PQID 2126731859
PQPubID 1456341
PageCount 20
ParticipantIDs proquest_journals_2126731859
gale_infotracacademiconefile_A622938286
gale_incontextgauss_ISR_A622938286
crossref_primary_10_1007_s11263_018_1126_y
crossref_citationtrail_10_1007_s11263_018_1126_y
springer_journals_10_1007_s11263_018_1126_y
PublicationCentury 2000
PublicationDate 20200500
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Jensen, R. R., Dahl, A. L., Vogiatzis, G., Tola, E., & Aanæs, H. (2014). Large scale multi-view stereopsis evaluation. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
Kar, A., Tulsiani, S., Carreira, J., & Malik, J. (2015). Category-specific object reconstruction from a single image. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the international conference on machine learning (ICML).
LawAJAliagaDGSingle viewpoint model completion of symmetric objects for digital inspectionComputer Vision and Image Understanding (CVIU)2011115560361010.1016/j.cviu.2010.11.019
Bao, S., Chandraker, M., Lin, Y., & Savarese, S. (2013). Dense object reconstruction with semantic priors. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
Wang, W., Huang, Q., You, S., Yang, C., & Neumann, U. (2017). Shape inpainting using 3d generative adversarial network and recurrent convolutional networks. In Proceedings of the IEEE international conference on computer vision (ICCV).
van der MaatenLHintonGVisualizing high-dimensional data using t-sneJournal of Machine Learning Research (JMLR)20089257926051225.68219
SungMKimVGAngstRGuibasLJData-driven structural priors for shape completionACM Transaction on Graphics2015346175:1175:1110.1145/2816795.2818094
Nguyen, D. T., Hua, B., Tran, M., Pham, Q., & Yeung, S. (2016). A field model for repairing 3d shapes. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
Steinbrucker, F., Kerl, C., & Cremers, D. (2013). Large-scale multi-resolution surface reconstruction from rgb-d sequences. In Proceedings of the IEEE international conference on computer vision (ICCV).
NashCWilliamsCKIThe shape variational autoencoder: A deep generative model of part-segmented 3d objectsEurographics Symposium on Geometry Processing (SGP)2017365112
Chang, A. X., Funkhouser, T. A., Guibas, L. J., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., & Yu, F. (2015). Shapenet: An information-rich 3d model repository. arXiv:1512.03012.
Choy CB, Xu D, Gwak J, Chen K, & Savarese S (2016) 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In Proceedings of the European conference on computer vision (ECCV).
Stutz, D., & Geiger, A. (2018). Learning 3d shape completion from laser scan data with weak supervision. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
Curless, B., & Levoy, M. (1996). A volumetric method for building complex models from range images. In ACM transaction on graphics (SIGGRAPH).
Eigen, D., Puhrsch, C., & Fergus, R. (2014). Depth map prediction from a single image using a multi-scale deep network. In Advances in neural information processing systems (NIPS).
Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the international conference on learning representations (ICLR).
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
Whelan, T., Leutenegger, S., Salas-Moreno, R. F., Glocker, B., & Davison, A. J. (2015). Elasticfusion: Dense SLAM without a pose graph. In Proceedings of robotics: science and systems (RSS).
ZiaMStarkMSchieleBSchindlerKDetailed 3D representations for object recognition and modelingIEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI)201335112608262310.1109/TPAMI.2013.87
Pauly, M., Mitra, N. J., Giesen, J., Gross, M. H., & Guibas, L. J. (2005). Example-based 3d scan completion. In: Eurographics symposium on geometry processing (SGP).
AbramowitzMHandbook of mathematical functions, with formulas, graphs, and mathematical tables1974New YorkDover Publications0171.38503
Tulsiani, S., Zhou, T., Efros, A. A., & Malik, J. (2017). Multi-view supervision for single-view reconstruction via differentiable ray consistency. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
ZhengQSharfAWanGLiYMitraNJCohen-OrDChenBNon-local scan consolidation for 3d urban scenes.ACM Trans on Graphics201029494:194:9
Zheng, S., Prisacariu, V. A., Averkiou, M., Cheng, M. M., Mitra, N. J., Shotton, J., Torr, P. H. S., & Rother, C. (2015). Object proposal estimation in depth images using compact 3d shape manifolds. In Proceedings of the German conference on pattern recognition (GCPR).
Jones, E., Oliphant, T., & Peterson, P, et al. (2001). SciPy: Open source scientific tools for Python. http://www.scipy.org/.
Oswald, M. R., Töppe, E., Nieuwenhuis, C., & Cremers, D. (2013). A review of geometry recovery from a single image focusing on curved object reconstruction, pp. 343–378.
Tatarchenko, M., Dosovitskiy, A., & Brox, T. (2017). Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs. In Proceedings of the IEEE international conference on computer vision (ICCV).
Girdhar, R., Fouhey, D. F., Rodriguez, M., & Gupta, A. (2016). Learning a predictable and generative vector representation for objects. In Proceedings of the European conference on computer vision (ECCV).
Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., & Fitzgibbon, A. (2011). Kinectfusion: Real-time dense surface mapping and tracking. In Proceedings of the international symposium on mixed and augmented reality (ISMAR).
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., & Ranzuglia, G. (2008). Meshlab: An open-source mesh processing tool. In Eurographics Italian chapter conference
Rock, J., Gupta, T., Thorsen, J., Gwak, J., Shin, D., & Hoiem, D. (2015). Completing 3d object shape from one depth image. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3d surface construction algorithm. In ACM transaction on graphics (SIGGRAPH).
Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., & Navab, N. (2016). Deeper depth prediction with fully convolutional residual networks. In Proceedings of the international conference on 3D vision (3DV).
Wu, J., Zhang, C., Xue, T., Freeman, B., & Tenenbaum, J. (2016b). Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In Advances in neural information processing systems (NIPS).
PizloZ3D shape: Its unique place in visual perception2010New YorkMIT Press
Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Conference on artificial intelligence and statistics (AISTATS).
Leotta, M. J., & Mundy, J. L. (2009). Predicting high resolution image edges with a generic, adaptive, 3-d vehicle model. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
SandhuRDambrevilleSYezziAJTannenbaumAA nonrigid kernel-based framework for 2d–3d pose estimation and 2d image segmentationIEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI)20113361098111510.1109/TPAMI.2010.162
NanLXieKSharfAA search-classify approach for cluttered indoor scene understandingACM TG2012316137:1137:10
Häne, C., Tulsiani, S., & Malik, J. (2017). Hierarchical surface prediction for 3d object reconstruction. arXiv:1704.00710.
Yang, B., Rosa, S., Markham, A., Trigoni, N., & Wen, H. (2018). 3d object dense reconstruction from a single depth view. arXiv:1802.00411.
Ritchie, D., Horsfall, P., & Goodman, N. D. (2016). Deep amortized inference for probabilistic programs. arXiv:1610.05735.
Engelmann, F., Stückler, J., & Leibe, B. (2017). SAMP: shape and motion priors for 4d vehicle reconstruction. In Proceedings of the IEEE winter conference on applications of computer vision (WACV), pp. 400–408.
Sandhu, R., Dambreville, S., Yezzi, A. J., & Tannenbaum, A. (2009). Non-rigid 2d-3d pose estimation and 2d image segmentation. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2016). Variational inference: A review for statisticians. arXiv:1601.00670.
Brock, A., Lim, T., Ritchie, J. M., & Weston, N. (2016). Generative and discriminative voxel modeling with convolutional neural networks. arXiv:1608.04236.
Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., & Urtasun, R. (2016). 3d object proposals using stereo imagery for accurate object class detection. arXiv:1608.07711.
Haene, C., Savinov, N., & Pollefeys, M. (2014). Class specific 3d object shape priors using surface normals. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
Varley, J., DeChant, C., Richardson, A., Ruales, J., & Allen, P. K. (2017). Shape completion enabled robotic grasping. In Proceedings of IEEE international conference on intelligent robots and systems (IROS).
Li, Y., Dai, A., Guibas, L., & Nießner, M. (2015). Database-assisted object retrieval for real-time 3d reconstruction. In Computer graphics forum.
Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017a). Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
Sharma, A., Grau, O., & Fritz, M. (2016). Vconv-dae: Deep volumetric shape learning without object labels. arXiv:1604.03755.
Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Proceedings of the European conference on computer vision (ECCV).
PaulyMMitraNJWallnerJPottmannHGuibasLJDiscovering structural regularity in 3d geometryACM Transaction on Graphics200827343:143:1110.1145/1360612.1360642
Yang, B., Wen, H., Wang, S., Clark, R., Markham, A., &
1126_CR88
1126_CR89
1126_CR86
1126_CR80
1126_CR81
1126_CR84
1126_CR85
1126_CR83
1126_CR77
1126_CR78
1126_CR75
1126_CR100
R Sandhu (1126_CR76) 2011; 33
1126_CR79
1126_CR70
1126_CR73
1126_CR102
1126_CR74
1126_CR71
1126_CR72
1126_CR22
1126_CR20
1126_CR21
1126_CR26
1126_CR27
1126_CR24
1126_CR25
L van der Maaten (1126_CR87) 2008; 9
1126_CR28
1126_CR29
1126_CR11
1126_CR12
1126_CR97
P Besl (1126_CR5) 1992; 14
1126_CR10
1126_CR98
1126_CR15
1126_CR16
1126_CR13
1126_CR14
1126_CR91
1126_CR92
1126_CR90
1126_CR95
1126_CR96
1126_CR93
1126_CR94
M Zia (1126_CR101) 2013; 35
1126_CR19
1126_CR17
1126_CR18
1126_CR44
1126_CR42
1126_CR43
1126_CR48
1126_CR49
1126_CR46
1126_CR47
M Pauly (1126_CR60) 2008; 27
1126_CR40
1126_CR41
Z Pizlo (1126_CR63) 2010
1126_CR33
1126_CR34
1126_CR31
1126_CR32
1126_CR37
1126_CR38
1126_CR35
1126_CR36
AJ Law (1126_CR45) 2011; 115
1126_CR30
1126_CR39
1126_CR66
1126_CR67
1126_CR64
1126_CR65
1126_CR68
1126_CR69
M Abramowitz (1126_CR1) 1974
Q Zheng (1126_CR99) 2010; 29
1126_CR62
1126_CR61
C Nash (1126_CR55) 2017; 36
L Nan (1126_CR54) 2012; 31
1126_CR56
1126_CR53
1126_CR59
1126_CR57
1126_CR58
1126_CR4
1126_CR2
1126_CR3
1126_CR8
1126_CR51
1126_CR9
1126_CR52
1126_CR6
1126_CR7
1126_CR50
M Sung (1126_CR82) 2015; 34
Y Furukawa (1126_CR23) 2013; 9
References_xml – reference: PaulyMMitraNJWallnerJPottmannHGuibasLJDiscovering structural regularity in 3d geometryACM Transaction on Graphics200827343:143:1110.1145/1360612.1360642
– reference: Thrun, S., & Wegbreit, B. (2005). Shape from symmetry. In Proceedings of the IEEE international conference on computer vision (ICCV), pp 1824–1831.
– reference: AbramowitzMHandbook of mathematical functions, with formulas, graphs, and mathematical tables1974New YorkDover Publications0171.38503
– reference: Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2016). Variational inference: A review for statisticians. arXiv:1601.00670.
– reference: Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the international conference on machine learning (ICML).
– reference: Wu, J., Xue, T., Lim, J. J., Tian, Y., Tenenbaum, J. B., Torralba, A., & Freeman, W. T. (2016a). Single image 3d interpreter network. In Proceedings of the European conference on computer vision (ECCV).
– reference: Bao, S., Chandraker, M., Lin, Y., & Savarese, S. (2013). Dense object reconstruction with semantic priors. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: van der MaatenLHintonGVisualizing high-dimensional data using t-sneJournal of Machine Learning Research (JMLR)20089257926051225.68219
– reference: Dai, A., Qi, C. R., & Nießner, M. (2017). Shape completion using 3d-encoder-predictor cnns and shape synthesis. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Kar, A., Tulsiani, S., Carreira, J., & Malik, J. (2015). Category-specific object reconstruction from a single image. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., & Fitzgibbon, A. (2011). Kinectfusion: Real-time dense surface mapping and tracking. In Proceedings of the international symposium on mixed and augmented reality (ISMAR).
– reference: ZiaMStarkMSchieleBSchindlerKDetailed 3D representations for object recognition and modelingIEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI)201335112608262310.1109/TPAMI.2013.87
– reference: FurukawaYHernandezCMulti-view stereo: A tutorialFoundations and Trends in Computer Graphics and Vision201391–21148
– reference: Haene, C., Savinov, N., & Pollefeys, M. (2014). Class specific 3d object shape priors using surface normals. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Jones, E., Oliphant, T., & Peterson, P, et al. (2001). SciPy: Open source scientific tools for Python. http://www.scipy.org/.
– reference: NashCWilliamsCKIThe shape variational autoencoder: A deep generative model of part-segmented 3d objectsEurographics Symposium on Geometry Processing (SGP)2017365112
– reference: Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3d surface construction algorithm. In ACM transaction on graphics (SIGGRAPH).
– reference: Wang, W., Huang, Q., You, S., Yang, C., & Neumann, U. (2017). Shape inpainting using 3d generative adversarial network and recurrent convolutional networks. In Proceedings of the IEEE international conference on computer vision (ICCV).
– reference: Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., & Navab, N. (2016). Deeper depth prediction with fully convolutional residual networks. In Proceedings of the international conference on 3D vision (3DV).
– reference: ZhengQSharfAWanGLiYMitraNJCohen-OrDChenBNon-local scan consolidation for 3d urban scenes.ACM Trans on Graphics201029494:194:9
– reference: Fan, H., Su, H., & Guibas, L. J. (2017). A point set generation network for 3d object reconstruction from a single image. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Sandhu, R., Dambreville, S., Yezzi, A. J., & Tannenbaum, A. (2009). Non-rigid 2d-3d pose estimation and 2d image segmentation. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Jensen, R. R., Dahl, A. L., Vogiatzis, G., Tola, E., & Aanæs, H. (2014). Large scale multi-view stereopsis evaluation. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Nguyen, D. T., Hua, B., Tran, M., Pham, Q., & Yeung, S. (2016). A field model for repairing 3d shapes. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Im, D. J., Ahn, S., Memisevic, R., & Bengio, Y. (2017). Denoising criterion for variational auto-encoding framework. In Proceedings of the conference on artificial intelligence (AAAI), pp. 2059–2065.
– reference: Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017b). Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Advances in neural information processing systems (NIPS).
– reference: Song, S. & Xiao, J. (2014). Sliding shapes for 3D object detection in depth images. In Proceedings of the European Conference on Computer Vision (ECCV).
– reference: Lin, C., Kong, C., & Lucey, S. (2017). Learning efficient point cloud generation for dense 3d object reconstruction. arXiv:1706.07036.
– reference: Whelan, T., Leutenegger, S., Salas-Moreno, R. F., Glocker, B., & Davison, A. J. (2015). Elasticfusion: Dense SLAM without a pose graph. In Proceedings of robotics: science and systems (RSS).
– reference: Zia, M. Z., Stark, M., & Schindler, K. (2014). Are cars just 3d boxes? Jointly estimating the 3d shape of multiple objects. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp. 3678–3685.
– reference: Gupta, S., Arbeláez, P. A., Girshick, R. B., & Malik, J. (2015). Aligning 3D models to RGB-D images of cluttered scenes. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Riegler, G., Ulusoy, A. O., & Geiger, A. (2017b). Octnet: Learning deep 3d representations at high resolutions. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Eigen, D., Puhrsch, C., & Fergus, R. (2014). Depth map prediction from a single image using a multi-scale deep network. In Advances in neural information processing systems (NIPS).
– reference: Rock, J., Gupta, T., Thorsen, J., Gwak, J., Shin, D., & Hoiem, D. (2015). Completing 3d object shape from one depth image. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Yan, X., Yang, J., Yumer, E., Guo, Y., & Lee, H. (2016). Perspective transformer nets: Learning single-view 3d object reconstruction without 3d supervision. In Advances in neural information processing systems (NIPS).
– reference: Tulsiani, S., Efros, A. A., & Malik, J. (2018). Multi-view consistency as supervisory signal for learning shape and pose prediction. arXiv:1801.03910.
– reference: SungMKimVGAngstRGuibasLJData-driven structural priors for shape completionACM Transaction on Graphics2015346175:1175:1110.1145/2816795.2818094
– reference: Chang, A. X., Funkhouser, T. A., Guibas, L. J., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., & Yu, F. (2015). Shapenet: An information-rich 3d model repository. arXiv:1512.03012.
– reference: Pauly, M., Mitra, N. J., Giesen, J., Gross, M. H., & Guibas, L. J. (2005). Example-based 3d scan completion. In: Eurographics symposium on geometry processing (SGP).
– reference: BeslPMcKayHA method for registration of 3d shapesIEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)19921423925610.1109/34.121791
– reference: Pepik, B., Stark, M., Gehler, P. V., Ritschel, T., & Schiele, B. (2015). 3d object class detection in the wild. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp. 1–10.
– reference: Zheng, S., Prisacariu, V. A., Averkiou, M., Cheng, M. M., Mitra, N. J., Shotton, J., Torr, P. H. S., & Rother, C. (2015). Object proposal estimation in depth images using compact 3d shape manifolds. In Proceedings of the German conference on pattern recognition (GCPR).
– reference: Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. C., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (NIPS).
– reference: Engelmann, F., Stückler, J., & Leibe, B. (2016). Joint object pose estimation and shape reconstruction in urban street scenes using 3D shape priors. In Proceedings of the German conference on pattern recognition (GCPR).
– reference: Engelmann, F., Stückler, J., & Leibe, B. (2017). SAMP: shape and motion priors for 4d vehicle reconstruction. In Proceedings of the IEEE winter conference on applications of computer vision (WACV), pp. 400–408.
– reference: Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the international conference on learning representations (ICLR).
– reference: Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., & Urtasun, R. (2016). 3d object proposals using stereo imagery for accurate object class detection. arXiv:1608.07711.
– reference: Curless, B., & Levoy, M. (1996). A volumetric method for building complex models from range images. In ACM transaction on graphics (SIGGRAPH).
– reference: Sharma, A., Grau, O., & Fritz, M. (2016). Vconv-dae: Deep volumetric shape learning without object labels. arXiv:1604.03755.
– reference: Smith, E., & Meger, D. (2017). Improved adversarial systems for 3d object generation and reconstruction. arXiv:1707.09557.
– reference: Eigen, D., & Fergus, R. (2015). Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In Proceedings of the IEEE international conference on computer vision (ICCV).
– reference: NanLXieKSharfAA search-classify approach for cluttered indoor scene understandingACM TG2012316137:1137:10
– reference: Kroemer, O., Amor, H. B., Ewerton, M., & Peters, J. (2012). Point cloud completion using extrusions. In IEEE-RAS international conference on humanoid robots (humanoids).
– reference: PizloZ3D shape: Its unique place in visual perception2010New YorkMIT Press
– reference: Pizlo, Z. (2007). Human perception of 3d shapes. In Proceedings of the international conference on computer analysis of images and patterns (CAIP).
– reference: Yang, B., Wen, H., Wang, S., Clark, R., Markham, A., & Trigoni, N. (2017). 3d object reconstruction from a single depth view with adversarial learning.arXiv:1708.07969.
– reference: Kingma, D. P., & Welling, M. (2014). Auto-encoding variational Bayes. In Proceedings of the international conference on learning representations (ICLR).
– reference: Yang, B., Rosa, S., Markham, A., Trigoni, N., & Wen, H. (2018). 3d object dense reconstruction from a single depth view. arXiv:1802.00411.
– reference: Wu, J., Zhang, C., Xue, T., Freeman, B., & Tenenbaum, J. (2016b). Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In Advances in neural information processing systems (NIPS).
– reference: Rezende, D. J., Eslami, S. M. A., Mohamed, S., Battaglia, P., Jaderberg, M., & Heess, N. (2016). Unsupervised learning of 3d structure from images. arXiv:1607.00662.
– reference: Aubry, M., Maturana, D., Efros, A., Russell, B., & Sivic, J. (2014). Seeing 3D chairs: Exemplar part-based 2D–3D alignment using a large dataset of CAD models. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Girdhar, R., Fouhey, D. F., Rodriguez, M., & Gupta, A. (2016). Learning a predictable and generative vector representation for objects. In Proceedings of the European conference on computer vision (ECCV).
– reference: Han, X., Li, Z., Huang, H., Kalogerakis, E., & Yu, Y. (2017). High-resolution shape completion using deep neural networks for global structure and local geometry inference. In Proceedings of the IEEE international conference on computer vision (ICCV), pp. 85–93.
– reference: Xie, J., Kiefel, M., Sun, M. T., & Geiger, A. (2016). Semantic instance annotation of street scenes by 3d–2d label transfer. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Brock, A., Lim, T., Ritchie, J. M., & Weston, N. (2016). Generative and discriminative voxel modeling with convolutional neural networks. arXiv:1608.04236.
– reference: Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. In Proceedings of the international conference on machine learning (ICML).
– reference: LawAJAliagaDGSingle viewpoint model completion of symmetric objects for digital inspectionComputer Vision and Image Understanding (CVIU)2011115560361010.1016/j.cviu.2010.11.019
– reference: Gershman, S., & Goodman, N. D. (2014). Amortized inference in probabilistic reasoning. In Proceedings of the annual meeting of the cognitive science society.
– reference: Li, Y., Dai, A., Guibas, L., & Nießner, M. (2015). Database-assisted object retrieval for real-time 3d reconstruction. In Computer graphics forum.
– reference: Wang, S., Bai, M., Mattyus, G., Chu, H., Luo, W., Yang, B., Liang, J., Cheverie, J., Fidler, S., & Urtasun, R. (2016) Torontocity: Seeing the world with a million eyes. arXiv:1612.00423.
– reference: Güney, F., & Geiger, A., (2015). Displets: Resolving stereo ambiguities using object knowledge. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Proceedings of the European conference on computer vision (ECCV).
– reference: Choy CB, Xu D, Gwak J, Chen K, & Savarese S (2016) 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In Proceedings of the European conference on computer vision (ECCV).
– reference: Prisacariu, V. A., & Reid, I. (2011). Nonlinear shape manifolds as shape priors in level set segmentation and tracking. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Kato, H., Ushiku, Y., & Harada, T. (2017). Neural 3d mesh renderer. arXiv:1711.07566.
– reference: Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer-assisted intervention (MICCAI).
– reference: Leotta, M. J., & Mundy, J. L. (2009). Predicting high resolution image edges with a generic, adaptive, 3-d vehicle model. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017a). Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Tatarchenko, M., Dosovitskiy, A., & Brox, T. (2017). Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs. In Proceedings of the IEEE international conference on computer vision (ICCV).
– reference: Varley, J., DeChant, C., Richardson, A., Ruales, J., & Allen, P. K. (2017). Shape completion enabled robotic grasping. In Proceedings of IEEE international conference on intelligent robots and systems (IROS).
– reference: Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Prisacariu, V., Segal, A., & Reid, I. (2013). Simultaneous monocular 2d segmentation, 3d pose recovery and 3d reconstruction. In Proceedings of the Asian conference on computer vision (ACCV).
– reference: Cicek Ö, Abdulkadir A, Lienkamp S. S., Brox, T., & Ronneberger, O. (2016). 3d u-net: Learning dense volumetric segmentation from sparse annotation. arXiv:1606.06650.
– reference: Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., & Ranzuglia, G. (2008). Meshlab: An open-source mesh processing tool. In Eurographics Italian chapter conference
– reference: Dame, A., Prisacariu, V., Ren, C., & Reid, I. (2013). Dense reconstruction using 3D object shape priors. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Riegler, G., Ulusoy, A. O., Bischof, H., & Geiger, A. (2017a). OctNetFusion: Learning depth fusion from data. In Proceedings of the international conference on 3D vision (3DV).
– reference: Agarwal, S., & Mierle, K. (2012). Others ceres solver. http://ceres-solver.org.
– reference: Gwak, J., Choy, C. B., Garg, A., Chandraker, M., & Savarese, S. (2017). Weakly supervised generative adversarial networks for 3d reconstruction. arXiv:1705.10904.
– reference: Oswald, M. R., Töppe, E., Nieuwenhuis, C., & Cremers, D. (2013). A review of geometry recovery from a single image focusing on curved object reconstruction, pp. 343–378.
– reference: Ritchie, D., Horsfall, P., & Goodman, N. D. (2016). Deep amortized inference for probabilistic programs. arXiv:1610.05735.
– reference: Firman, M., Mac Aodha, O., Julier, S., & Brostow, G. J. (2016). Structured prediction of unobserved voxels from a single depth image. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Liu, S, Ago I. I., & Giles, C. L. (2017). Learning a hierarchical latent-variable model of voxelized 3d shapes. arXiv:1705.05994.
– reference: Häne, C., Tulsiani, S., & Malik, J. (2017). Hierarchical surface prediction for 3d object reconstruction. arXiv:1704.00710.
– reference: Steinbrucker, F., Kerl, C., & Cremers, D. (2013). Large-scale multi-resolution surface reconstruction from rgb-d sequences. In Proceedings of the IEEE international conference on computer vision (ICCV).
– reference: Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Conference on artificial intelligence and statistics (AISTATS).
– reference: Stutz, D., & Geiger, A. (2018). Learning 3d shape completion from laser scan data with weak supervision. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Ma, L., & Sibley, G. (2014). Unsupervised dense object discovery, detection, tracking and reconstruction. In Proceedings of the European conference on computer vision (ECCV).
– reference: Menze, M., & Geiger, A. (2015). Object scene flow for autonomous vehicles. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Collobert, R., Kavukcuoglu, K., & Farabet, C. (2011). Torch7: A matlab-like environment for machine learning. In Advances in neural information processing systems (NIPS) workshops.
– reference: Tulsiani, S., Zhou, T., Efros, A. A., & Malik, J. (2017). Multi-view supervision for single-view reconstruction via differentiable ray consistency. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR).
– reference: SandhuRDambrevilleSYezziAJTannenbaumAA nonrigid kernel-based framework for 2d–3d pose estimation and 2d image segmentationIEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI)20113361098111510.1109/TPAMI.2010.162
– ident: 1126_CR44
  doi: 10.1109/3DV.2016.32
– ident: 1126_CR69
– ident: 1126_CR10
  doi: 10.1007/978-3-319-46484-8_38
– ident: 1126_CR37
  doi: 10.1109/CVPR.2014.59
– ident: 1126_CR22
  doi: 10.1109/CVPR.2016.586
– ident: 1126_CR56
  doi: 10.1109/ISMAR.2011.6162880
– ident: 1126_CR47
  doi: 10.1111/cgf.12573
– ident: 1126_CR19
  doi: 10.1007/978-3-319-45886-1_18
– volume: 115
  start-page: 603
  issue: 5
  year: 2011
  ident: 1126_CR45
  publication-title: Computer Vision and Image Understanding (CVIU)
  doi: 10.1016/j.cviu.2010.11.019
– ident: 1126_CR65
  doi: 10.1109/CVPR.2011.5995687
– ident: 1126_CR7
– ident: 1126_CR72
– ident: 1126_CR100
  doi: 10.1007/978-3-319-24947-6_16
– ident: 1126_CR28
– ident: 1126_CR11
  doi: 10.1007/978-3-319-46723-8_49
– ident: 1126_CR41
– ident: 1126_CR66
– ident: 1126_CR97
  doi: 10.1109/TPAMI.2018.2868195
– volume: 31
  start-page: 137:1
  issue: 6
  year: 2012
  ident: 1126_CR54
  publication-title: ACM TG
– ident: 1126_CR61
  doi: 10.1109/CVPRW.2015.7301358
– ident: 1126_CR86
  doi: 10.1109/CVPR.2017.30
– ident: 1126_CR49
  doi: 10.1007/978-3-319-10602-1_48
– ident: 1126_CR93
– ident: 1126_CR2
– ident: 1126_CR83
  doi: 10.1109/ICCV.2017.230
– ident: 1126_CR96
– ident: 1126_CR43
  doi: 10.1109/HUMANOIDS.2012.6651593
– ident: 1126_CR95
  doi: 10.1109/CVPR.2016.401
– ident: 1126_CR29
  doi: 10.1109/CVPR.2015.7299044
– ident: 1126_CR48
– ident: 1126_CR84
  doi: 10.1109/ICCV.2005.221
– ident: 1126_CR12
– ident: 1126_CR85
  doi: 10.1109/CVPR.2018.00306
– ident: 1126_CR98
  doi: 10.1109/ICCVW.2017.86
– ident: 1126_CR33
  doi: 10.1109/ICCV.2017.19
– ident: 1126_CR58
  doi: 10.1007/978-3-642-34141-0_16
– volume: 34
  start-page: 175:1
  issue: 6
  year: 2015
  ident: 1126_CR82
  publication-title: ACM Transaction on Graphics
  doi: 10.1145/2816795.2818094
– ident: 1126_CR81
  doi: 10.1109/CVPR.2018.00209
– ident: 1126_CR34
  doi: 10.1109/3DV.2017.00054
– volume: 14
  start-page: 239
  year: 1992
  ident: 1126_CR5
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
  doi: 10.1109/34.121791
– ident: 1126_CR68
– ident: 1126_CR32
  doi: 10.1109/CVPR.2014.89
– ident: 1126_CR24
  doi: 10.1109/CVPR.2012.6248074
– volume: 35
  start-page: 2608
  issue: 11
  year: 2013
  ident: 1126_CR101
  publication-title: IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI)
  doi: 10.1109/TPAMI.2013.87
– ident: 1126_CR30
  doi: 10.1109/CVPR.2015.7299105
– ident: 1126_CR26
  doi: 10.1007/978-3-319-46466-4_29
– ident: 1126_CR79
  doi: 10.1007/978-3-319-10599-4_41
– ident: 1126_CR17
  doi: 10.1109/ICCV.2015.304
– ident: 1126_CR27
– ident: 1126_CR42
– volume: 9
  start-page: 2579
  year: 2008
  ident: 1126_CR87
  publication-title: Journal of Machine Learning Research (JMLR)
– ident: 1126_CR102
  doi: 10.1109/CVPR.2014.470
– ident: 1126_CR62
  doi: 10.1007/978-3-540-74272-2_1
– ident: 1126_CR71
  doi: 10.1109/CVPR.2017.701
– volume: 27
  start-page: 43:1
  issue: 3
  year: 2008
  ident: 1126_CR60
  publication-title: ACM Transaction on Graphics
  doi: 10.1145/1360612.1360642
– ident: 1126_CR18
– ident: 1126_CR94
– ident: 1126_CR4
  doi: 10.1109/CVPR.2013.167
– ident: 1126_CR9
– volume: 33
  start-page: 1098
  issue: 6
  year: 2011
  ident: 1126_CR76
  publication-title: IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI)
  doi: 10.1109/TPAMI.2010.162
– volume: 29
  start-page: 94:1
  issue: 4
  year: 2010
  ident: 1126_CR99
  publication-title: ACM Trans on Graphics
– ident: 1126_CR3
  doi: 10.1109/CVPR.2014.487
– ident: 1126_CR59
– ident: 1126_CR13
– ident: 1126_CR90
  doi: 10.1109/ICCV.2017.252
– ident: 1126_CR46
  doi: 10.1109/CVPRW.2009.5206738
– ident: 1126_CR74
  doi: 10.1007/978-3-319-24574-4_28
– ident: 1126_CR73
  doi: 10.1109/CVPR.2015.7298863
– volume-title: Handbook of mathematical functions, with formulas, graphs, and mathematical tables
  year: 1974
  ident: 1126_CR1
– ident: 1126_CR6
– ident: 1126_CR38
– ident: 1126_CR53
  doi: 10.1109/CVPR.2015.7298925
– volume: 36
  start-page: 1
  issue: 5
  year: 2017
  ident: 1126_CR55
  publication-title: Eurographics Symposium on Geometry Processing (SGP)
– ident: 1126_CR8
– ident: 1126_CR88
  doi: 10.1109/IROS.2017.8206060
– ident: 1126_CR25
– ident: 1126_CR67
– ident: 1126_CR70
  doi: 10.1109/3DV.2017.00017
– volume-title: 3D shape: Its unique place in visual perception
  year: 2010
  ident: 1126_CR63
– ident: 1126_CR14
  doi: 10.1145/237170.237269
– ident: 1126_CR92
  doi: 10.1007/978-3-319-46466-4_22
– ident: 1126_CR75
  doi: 10.1109/CVPRW.2009.5206842
– ident: 1126_CR31
– ident: 1126_CR77
  doi: 10.1007/978-3-319-49409-8_20
– ident: 1126_CR16
  doi: 10.1109/CVPR.2013.170
– ident: 1126_CR52
  doi: 10.1007/978-3-319-10605-2_6
– ident: 1126_CR57
  doi: 10.1109/CVPR.2016.612
– ident: 1126_CR21
  doi: 10.1109/CVPR.2017.264
– ident: 1126_CR80
  doi: 10.1109/ICCV.2013.405
– ident: 1126_CR39
  doi: 10.1109/CVPR.2015.7298807
– volume: 9
  start-page: 1
  issue: 1–2
  year: 2013
  ident: 1126_CR23
  publication-title: Foundations and Trends in Computer Graphics and Vision
– ident: 1126_CR20
  doi: 10.1109/WACV.2017.51
– ident: 1126_CR36
– ident: 1126_CR51
  doi: 10.1145/37401.37422
– ident: 1126_CR91
  doi: 10.15607/RSS.2015.XI.001
– ident: 1126_CR15
  doi: 10.1109/CVPR.2017.693
– ident: 1126_CR89
  doi: 10.1109/ICCV.2017.327
– ident: 1126_CR40
  doi: 10.1109/CVPR.2018.00411
– ident: 1126_CR78
– ident: 1126_CR35
  doi: 10.1609/aaai.v31i1.10777
– ident: 1126_CR50
  doi: 10.1109/3DV.2018.00068
– ident: 1126_CR64
  doi: 10.1007/978-3-642-37331-2_45
SSID ssj0002823
Score 2.5540597
Snippet We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1162
SubjectTerms Artificial Intelligence
Artificial neural networks
Computer Imaging
Computer Science
Computer vision
Image Processing and Computer Vision
Image reconstruction
Machine vision
Object recognition
Pattern Recognition
Pattern Recognition and Graphics
Robotics
Shape optimization
Special Issue on Deep Learning for Robotic Vision
Supervised learning
Supervision
Three dimensional models
Vision
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58Hbz4FtcXQQRBKfaVtD2J-EAPiriK3sKYh4rSXe2u4L83001dVPTiLaTTNOkkk5lkZj6ATRQRYhpFASJ3Bgq3IkDO8yBBbbg1osjvwhpsIjs_z29viwt_4FZ5t8pGJtaCWncUnZHvOhErMgr1Lfa6LwGhRtHtqofQGIVx0mzIpe8sPPiUxM6cGEDJOxOJiyJqbjXr0DnXHnkSORvKlYL3L_vSd-n845q03n2Op__b7xmY8non2x9MlFkYMeUcTHsdlPkVXrmqBuahqZuHxOdgvWfJIWs_YNcwIqKs3Z2S1cBJ7MbgE2v3uyR56PxtAa6Pj64OTgKPtRCoNIl7QWq1jiiQWmturBZa5Noqt_3rODVCcAxDzNI7zJ02bpEnhc0F14hGFzZLjE0WYazslGYJGKowy5xhFGW5TW2hncXC0zi0CrVSOspaEDZ_WiqfiJzwMJ7lMIUyMUc65kgqyfcWbH--0h1k4fiLeIPYJym7RUnuM_fYryp52r6U-yJ26g1FzrdgyxPZjvu4Qh-N4IZACbG-UK42jJV-fVdyyNUW7DRTY_j4174t_93YCkzGZM_XDpWrMNZ77Zs1mFBvvcfqdb2e3B-a7v2k
  priority: 102
  providerName: ProQuest
Title Learning 3D Shape Completion Under Weak Supervision
URI https://link.springer.com/article/10.1007/s11263-018-1126-y
https://www.proquest.com/docview/2126731859
Volume 128
WOSCitedRecordID wos000531431500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_6sYe9rOs-aLouiDEobBgs25Lsx65rWSkLIenWbi_iqo-2rDihTgb973dy5IbuC7YXIctnW5asu_v5dHcAr1FyxILzBFEQQBFeJihEmeRonfBOVuV52iabUINBeXZWDaMfd9Ptdu9Mki2nXjq78SzYHDmhHqolt6uwTtKuDPkaRuPPd-yXMMQifzzhIiEr3pkyf3eLe8LoZ5b8i220FTmHG__V2cfwKGqYbG_xSWzCiqufwEbUNllcyw01dQkdurankMdoqxcsf8_Glzh1LBCF-NyTmrUpktipw29sPJ8GHhP-tD2DT4cHJ_sfkphVITFFns2SwlvLg8u0tcJ5K60srTck6G1WOCkFpimq4hxL0rs9irzypRQW0dnKq9z5_Dms1ZPabQFDkypFEIir0he-soRNRJGl3qA1xnLVg7QbXm1iyPGQ-eJaL4Mlh3HSNE461PRtD97cXTJdxNv4G_GrMGc6xLGow0aZC5w3jT4aj_SezEiRCT7yPdiNRH5CDzcY_Q7oFULoq3uUO93c67iSG02iXargYl714G0318vTf-zb9j9Rv4CHWQDy7U7KHVib3czdS3hgvs-umps-rKrTL31Yf3cwGI7o6FglVH5M96kciq_9dgH8AIhE-Tc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylNsW8BCICRQRF62kwNCFaXqassKsUX0ZqZ-FESVXZrdov1T_EZmsklXBdFbD9wsZ-LY8Xg8Y8_MB_AUVYKYJ0mEKMlAkUFFKGURZei8DF6VxWHcgE3o4bA4OCg_rMCvLhaG3So7mdgIaje2fEb-ikSs0hzqW76Z_IgYNYpvVzsIjQVbDPz8J5ls9ev-Ns3vszTdebf_djdqUQUim2fpNMqDcwmHDDsnfXDKqcIFSxudS3OvlMQ4Rp0fYkF6Z0CZlaFQ0iF6Vwad-ZBRu1fgap4VmtfVQEdnkp_MlwV0PZlkUpVJd4vahOpR_9lziWw2KkXzc_vgn7vBX9eyzW63s_a__adbcLPVq8XWYiHchhVf3YG1VscWrQSrqaqDsejq7kLW5pg9Etm2GH3FiRdMxFnJx5VogKHEZ4_fxWg2YcnK54v34NOljOY-rFbjyj8AgTbWmgy_RBchD6Uji0zmaRwsOmtdonsQdzNrbJtonfE-js0yRTQzgyFmMFwy8x68OHtlssgychHxE2YXw9k7KnYPOsJZXZv-6KPZUimpb5wZoAfPW6Iwpo9bbKMtaAic8Osc5WbHSKaVX7VZclEPXnasuHz8z76tX9zYY7i-u_9-z-z1h4MNuJHy2UXjPLoJq9OTmX8I1-zp9Ft98qhZWAK-XDaH_gZmN109
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAXylMECqwQCAlk1a9d2weEKkJEVBRFBETFZTvdR0EgJ9QJKH-NX8eMs25UEL31wM1aj9de77fz2J0HwGNUCWKeJBGiJANFehWhlGWUoXXSO1WVh3FbbKIYjcr9_Wq8Ab-6WBh2q-x4Ysuo7dTwHvkOsVhVcKhvteODW8S4P3g5-x5xBSk-ae3KaawgsueWP8l8a14M-zTXT9J08Pr9qzdRqDAQmTxL51HurU04fNha6bxVVpXWGxJ6Ns2dUhLjGIv8EEvSQT3KrPKlkhbR2coXmfMZ9XsBLhZkY7I74Vh-OpECZMqsytiTeSZVlXQnqm3YHo2FvZjIfqOraHlKJv4pGf46om0l32Drf_5n1-Bq0LfF7mqBXIcNV9-AraB7i8DZGmrqylt0bTchC7lnj0TWF5PPOHOCiThb-bQWbcEo8dHhVzFZzJjj8r7jLfhwLqO5DZv1tHZ3QKCJi4IMwqQofe4rS5aazNPYG7TG2KToQdzNsjYhATvXAfmm16mjGRiagKH5Si978Ozkkdkq-8hZxI8YOpqzetQ810e4aBo9nLzTuyoltY4zBvTgaSDyU3q5wRCFQUPgRGCnKLc7UOnA1xq9RlQPnnewXN_-57fdPbuzh3CZgKnfDkd79-BKylsarU_pNmzOjxfuPlwyP-ZfmuMH7RoTcHDeAP0NkZBmYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+3D+Shape+Completion+Under+Weak+Supervision&rft.jtitle=International+journal+of+computer+vision&rft.au=Stutz%2C+David&rft.au=Geiger%2C+Andreas&rft.date=2020-05-01&rft.pub=Springer+US&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=128&rft.issue=5&rft.spage=1162&rft.epage=1181&rft_id=info:doi/10.1007%2Fs11263-018-1126-y&rft.externalDocID=10_1007_s11263_018_1126_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon