Learning 3D Shape Completion Under Weak Supervision

We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are either data-driven or learning-based: Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations; Le...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer vision Vol. 128; no. 5; pp. 1162 - 1181
Main Authors: Stutz, David, Geiger, Andreas
Format: Journal Article
Language:English
Published: New York Springer US 01.05.2020
Springer
Springer Nature B.V
Subjects:
ISSN:0920-5691, 1573-1405
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We address the problem of 3D shape completion from sparse and noisy point clouds, a fundamental problem in computer vision and robotics. Recent approaches are either data-driven or learning-based: Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations; Learning-based approaches, in contrast, avoid the expensive optimization step by learning to directly predict complete shapes from incomplete observations in a fully-supervised setting. However, full supervision is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, i.e., learn , maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. On synthetic benchmarks based on ShapeNet (Chang et al. Shapenet: an information-rich 3d model repository, 2015 . arXiv:1512.03012 ) and ModelNet (Wu et al., in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2015 ) as well as on real robotics data from KITTI (Geiger et al., in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2012 ) and Kinect (Yang et al., 3d object dense reconstruction from a single depth view, 2018 . arXiv:1802.00411 ), we demonstrate that the proposed amortized maximum likelihood approach is able to compete with the fully supervised baseline of Dai et al. (in: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2017 ) and outperforms the data-driven approach of Engelmann et al. (in: Proceedings of the German conference on pattern recognition (GCPR), 2016 ), while requiring less supervision and being significantly faster.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-018-1126-y