Metric learning for text documents

Many algorithms in machine learning rely on being given a good distance metric over the input space. Rather than using a default metric such as the Euclidean metric, it is desirable to obtain a metric based on the provided data. We consider the problem of learning a Riemannian metric associated with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 28; číslo 4; s. 497 - 508
Hlavní autor: Lebanon, G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Alamitos, CA IEEE 01.04.2006
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Many algorithms in machine learning rely on being given a good distance metric over the input space. Rather than using a default metric such as the Euclidean metric, it is desirable to obtain a metric based on the provided data. We consider the problem of learning a Riemannian metric associated with a given differentiable manifold and a set of points. Our approach to the problem involves choosing a metric from a parametric family that is based on maximizing the inverse volume of a given data set of points. From a statistical perspective, it is related to maximum likelihood under a model that assigns probabilities inversely proportional to the Riemannian volume element. We discuss in detail learning a metric on the multinomial simplex where the metric candidates are pull-back metrics of the Fisher information under a Lie group of transformations. When applied to text document classification the resulting geodesic distance resemble, but outperform, the tfidf cosine similarity measure.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2006.77