Sample-Pair Envelope Diamond Autoencoder Ensemble Algorithm for Chronic Disease Recognition
Chronic diseases are severe and life-threatening, and their accurate early diagnosis is difficult. Machine-learning-based processes of data collected from the human body using wearable sensors are a valid method currently usable for diagnosis. However, it is difficult for wearable sensor systems to...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 13; číslo 12; s. 7322 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.06.2023
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Chronic diseases are severe and life-threatening, and their accurate early diagnosis is difficult. Machine-learning-based processes of data collected from the human body using wearable sensors are a valid method currently usable for diagnosis. However, it is difficult for wearable sensor systems to obtain high-quality and large amounts of data to meet the demands of diagnostic accuracy. Furthermore, existing feature-learning methods do not deal with this problem well. To address the above issues, a sample-pair envelope diamond autoencoder ensemble algorithm (SP_DFsaeLA) is proposed. The proposed algorithm has four main components. Firstly, sample-pair envelope manifold neighborhood concatenation mechanism (SP_EMNCM) is designed to find pairs of samples that are close to each other in a manifold neighborhood. Secondly, the feature-embedding stacked sparse autoencoder (FESSAE) is designed to extend features. Thirdly, a staged feature reduction mechanism is designed to reduce redundancy in the extended features. Fourthly, the sample-pair-based model and single-sample-based model are combined by weighted fusion. The proposed algorithm was experimentally validated on nine datasets and compared with the latest algorithm. The experimental results show that the algorithm is significantly better than existing representative algorithms and it achieves the highest improvement of 22.77%, 21.03%, 24.5%, 27.89%, and 10.65% on five criteria over the state-of-the-art methods. |
|---|---|
| AbstractList | Chronic diseases are severe and life-threatening, and their accurate early diagnosis is difficult. Machine-learning-based processes of data collected from the human body using wearable sensors are a valid method currently usable for diagnosis. However, it is difficult for wearable sensor systems to obtain high-quality and large amounts of data to meet the demands of diagnostic accuracy. Furthermore, existing feature-learning methods do not deal with this problem well. To address the above issues, a sample-pair envelope diamond autoencoder ensemble algorithm (SP_DFsaeLA) is proposed. The proposed algorithm has four main components. Firstly, sample-pair envelope manifold neighborhood concatenation mechanism (SP_EMNCM) is designed to find pairs of samples that are close to each other in a manifold neighborhood. Secondly, the feature-embedding stacked sparse autoencoder (FESSAE) is designed to extend features. Thirdly, a staged feature reduction mechanism is designed to reduce redundancy in the extended features. Fourthly, the sample-pair-based model and single-sample-based model are combined by weighted fusion. The proposed algorithm was experimentally validated on nine datasets and compared with the latest algorithm. The experimental results show that the algorithm is significantly better than existing representative algorithms and it achieves the highest improvement of 22.77%, 21.03%, 24.5%, 27.89%, and 10.65% on five criteria over the state-of-the-art methods. |
| Audience | Academic |
| Author | Zhang, Zuwei Li, Yongming Zhang, Yi Qin, Xiaolin Ma, Jie |
| Author_xml | – sequence: 1 givenname: Yi surname: Zhang fullname: Zhang, Yi – sequence: 2 givenname: Jie surname: Ma fullname: Ma, Jie – sequence: 3 givenname: Xiaolin surname: Qin fullname: Qin, Xiaolin – sequence: 4 givenname: Yongming orcidid: 0000-0002-7542-4356 surname: Li fullname: Li, Yongming – sequence: 5 givenname: Zuwei surname: Zhang fullname: Zhang, Zuwei |
| BookMark | eNptkU1v1DAQhi1UJErpiT8QiSNK8UcS28fVUqBSJRAfJw7WxB5vvUrsYGeR-Pd4WRAF1T54PPM-r0YzT8lZTBEJec7olRCavoJlYYJxKTh_RM45lUMrOibP7sVPyGUpe1qPZkIxek6-foJ5mbD9ACE31_E7TmnB5nWAOUXXbA5rwmiTw2Ox4DxO2GymXcphvZsbn3KzvcspBluRglCw-Yg27WJYQ4rPyGMPU8HL3-8F-fLm-vP2XXv7_u3NdnPb2k6wtbUce40jSE9d7XEQkvOxr9_B18oolNe2H0YuQOFAmWVOU6VG5NA73jklLsjNydcl2JslhxnyD5MgmF-JlHcG8hrshEZ02DHhOUjuOs0VKC90b6l04IZBYfV6cfJacvp2wLKafTrkWNs3XHEtGddC_VXtoJqG6NOawc6hWLORfadlNe2q6uoBVb0O52Dr8nyo-X8AdgJsTqVk9MaGFY6jrGCYDKPmuGlzb9OVefkf82cAD6l_AnbZqUw |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_125338 |
| Cites_doi | 10.1007/s10489-017-1037-6 10.1007/s12652-019-01193-6 10.1109/ACCESS.2021.3088613 10.1016/j.inffus.2019.06.021 10.1016/j.asoc.2019.106060 10.1109/ACCESS.2020.2989857 10.1038/s41581-019-0120-0 10.1109/HNICEM48295.2019.9073568 10.1108/IJPCC-04-2020-0018 10.1109/COMPSAC.2017.84 10.1109/TMSCS.2017.2710194 10.1016/j.jesit.2017.06.004 10.1007/s10489-021-02533-w 10.1038/nm733 10.1109/ICCIT51783.2020.9392694 10.1016/0169-7439(87)80084-9 10.1145/2988544 10.1109/TIFS.2017.2668221 10.1109/JSYST.2020.3024816 10.1186/s12938-018-0489-1 10.1007/978-3-319-95162-1_30 10.1109/JBHI.2013.2245674 10.1109/MERCon50084.2020.9185249 10.3389/fgene.2018.00515 10.1186/s13014-021-01906-2 10.1109/TFUZZ.2010.2089631 10.3390/app10186626 10.1016/j.cmpb.2017.09.004 10.1109/TBME.2008.2005954 10.1016/j.ijmedinf.2018.04.001 10.1162/NECO_a_00537 10.1007/s00521-018-3471-8 10.1109/ACCESS.2019.2929866 10.1126/science.1127647 10.1016/j.future.2019.09.056 10.1007/s00521-014-1731-9 10.1016/j.cmpb.2015.08.007 10.1016/j.asoc.2017.06.032 10.1186/s12859-022-04965-8 10.1109/BIBE.2017.00-39 10.1287/opre.43.4.570 10.1016/j.asoc.2018.07.029 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app13127322 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_34e413f2a72d4928a8f395c07dad668e A754973954 10_3390_app13127322 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c431t-c2e59eba7f0d41763722b5a7f6f2e5b38f9c56b23a8e601c1d9088be2a5d24d83 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001016941100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:42:38 EDT 2025 Mon Jun 30 07:30:08 EDT 2025 Tue Nov 11 10:26:09 EST 2025 Tue Nov 04 17:43:49 EST 2025 Sat Nov 29 07:11:44 EST 2025 Tue Nov 18 22:35:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c431t-c2e59eba7f0d41763722b5a7f6f2e5b38f9c56b23a8e601c1d9088be2a5d24d83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7542-4356 |
| OpenAccessLink | https://doaj.org/article/34e413f2a72d4928a8f395c07dad668e |
| PQID | 2829712938 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_34e413f2a72d4928a8f395c07dad668e proquest_journals_2829712938 gale_infotracmisc_A754973954 gale_infotracacademiconefile_A754973954 crossref_citationtrail_10_3390_app13127322 crossref_primary_10_3390_app13127322 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Lu (ref_21) 2022; 52 Cheruku (ref_27) 2017; 67 Rubini (ref_9) 2015; 5 ref_57 Hegde (ref_33) 2020; 17 ref_56 ref_11 Yamada (ref_44) 2014; 26 Paul (ref_17) 2018; 48 Hasan (ref_54) 2020; 8 Zou (ref_8) 2018; 9 ref_16 ref_15 Rasitha (ref_18) 2016; 4 Beer (ref_43) 2002; 8 Zhu (ref_53) 2020; 88 Sinha (ref_10) 2015; 4 Ge (ref_24) 2020; 127 Alhassan (ref_1) 2021; 9 (ref_25) 2015; 26 ref_22 Goswami (ref_50) 2017; 12 Li (ref_47) 2010; 19 Wu (ref_3) 2020; 15 ref_29 Muzammal (ref_4) 2020; 53 Simon (ref_34) 2019; 15 Wang (ref_55) 2019; 7 Chormunge (ref_14) 2018; 5 Sakar (ref_37) 2013; 17 ref_36 ref_35 Mohamed (ref_19) 2002; 15 ref_31 ref_30 Mangasarian (ref_39) 1995; 43 Ahmed (ref_12) 2020; 111 Simsek (ref_51) 2019; 355 Khan (ref_23) 2018; 115 Wold (ref_46) 1987; 2 Little (ref_40) 2009; 56 Hinton (ref_49) 2006; 313 Maniruzzaman (ref_28) 2017; 152 Sun (ref_45) 2011; 8 ref_42 Shrivas (ref_13) 2018; 4 ref_41 Rezaeijo (ref_32) 2021; 16 Tan (ref_38) 2018; 17 Abreu (ref_5) 2016; 49 Kampffmeyer (ref_52) 2018; 71 Shahbazi (ref_20) 2015; 122 He (ref_48) 2003; 16 Yin (ref_2) 2017; 3 ref_7 ref_6 Polat (ref_26) 2018; 30 |
| References_xml | – volume: 48 start-page: 1739 year: 2018 ident: ref_17 article-title: Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease publication-title: Appl. Intell. doi: 10.1007/s10489-017-1037-6 – ident: ref_16 doi: 10.1007/s12652-019-01193-6 – volume: 9 start-page: 87310 year: 2021 ident: ref_1 article-title: Review of feature selection, dimensionality reduction and classification for chronic disease diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3088613 – volume: 53 start-page: 155 year: 2020 ident: ref_4 article-title: A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.06.021 – volume: 88 start-page: 106060 year: 2020 ident: ref_53 article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.106060 – volume: 355 start-page: 325 year: 2019 ident: ref_51 article-title: Face recognition via deep stacked denoising sparse autoencoders (DSDSA) publication-title: Appl. Math. Comput. – volume: 8 start-page: 76516 year: 2020 ident: ref_54 article-title: Diabetes prediction using ensembling of different machine learning classifiers publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989857 – ident: ref_42 – ident: ref_35 – volume: 15 start-page: 193 year: 2019 ident: ref_34 article-title: Kidney disease in the global burden of disease study 2017 publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-019-0120-0 – ident: ref_56 doi: 10.1109/HNICEM48295.2019.9073568 – volume: 17 start-page: 20 year: 2020 ident: ref_33 article-title: Early prediction of chronic disease using an efficient machine learning algorithm through adaptive probabilistic divergence based feature selection approach publication-title: Int. J. Pervasive Comput. Commun. doi: 10.1108/IJPCC-04-2020-0018 – ident: ref_7 doi: 10.1109/COMPSAC.2017.84 – volume: 4 start-page: 608 year: 2015 ident: ref_10 article-title: Comparative study of chronic kidney disease prediction using KNN and SVM publication-title: Int. J. Eng. Res. Technol. – ident: ref_31 – volume: 3 start-page: 228 year: 2017 ident: ref_2 article-title: A health decision support system for disease diagnosis based on wearable medical sensors and machine learning ensembles publication-title: IEEE Trans. Multi Scale Comput. Syst. doi: 10.1109/TMSCS.2017.2710194 – volume: 5 start-page: 49 year: 2015 ident: ref_9 article-title: Generating comparative analysis of early stage prediction of chronic kidney disease publication-title: Int. J. Mod. Eng. Res. – volume: 5 start-page: 542 year: 2018 ident: ref_14 article-title: Correlation based feature selection with clustering for high dimensional data publication-title: J. Electr. Syst. Inf. Technol. doi: 10.1016/j.jesit.2017.06.004 – volume: 52 start-page: 2411 year: 2022 ident: ref_21 article-title: A patient network-based machine learning model for disease prediction: The case of type 2 diabetes mellitus publication-title: Appl. Intell. doi: 10.1007/s10489-021-02533-w – volume: 8 start-page: 816 year: 2002 ident: ref_43 article-title: Gene-expression profiles predict survival of patients with lung adenocarcinoma publication-title: Nat. Med. doi: 10.1038/nm733 – ident: ref_57 doi: 10.1109/ICCIT51783.2020.9392694 – volume: 2 start-page: 37 year: 1987 ident: ref_46 article-title: Principal component analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(87)80084-9 – volume: 49 start-page: 1 year: 2016 ident: ref_5 article-title: Predicting breast cancer recurrence using machine learning techniques: A systematic review publication-title: ACM Comput. Surv. doi: 10.1145/2988544 – ident: ref_41 – volume: 12 start-page: 1686 year: 2017 ident: ref_50 article-title: Face verification via learned representation on feature-rich video frames publication-title: IEEE Trans. Inf. Secur. doi: 10.1109/TIFS.2017.2668221 – volume: 15 start-page: 5537 year: 2020 ident: ref_3 article-title: Effective data decision-making and transmission system based on mobile health for chronic disease management in the elderly publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2020.3024816 – volume: 17 start-page: 49 year: 2018 ident: ref_38 article-title: Localized instance fusion of MRI data of Alzheimer’s disease for classification based on instance transfer ensemble learning publication-title: Biomed. Eng. Online doi: 10.1186/s12938-018-0489-1 – ident: ref_15 doi: 10.1007/978-3-319-95162-1_30 – volume: 17 start-page: 828 year: 2013 ident: ref_37 article-title: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2013.2245674 – ident: ref_11 doi: 10.1109/MERCon50084.2020.9185249 – volume: 4 start-page: 4 year: 2016 ident: ref_18 article-title: Predicting thyroid disease using linear discriminant analysis (LDA) data mining technique publication-title: Int. J. Mod. Trends Eng. Res. – volume: 9 start-page: 515 year: 2018 ident: ref_8 article-title: Predicting diabetes mellitus with machine learning techniques publication-title: Front. Genet. doi: 10.3389/fgene.2018.00515 – volume: 16 start-page: 182 year: 2021 ident: ref_32 article-title: The feasibility of a dose painting procedure to treat prostate cancer based on mpMR images and hierarchical clustering publication-title: Radiat. Oncol. doi: 10.1186/s13014-021-01906-2 – volume: 19 start-page: 152 year: 2010 ident: ref_47 article-title: LDA-based clustering algorithm and its application to an unsupervised feature extraction publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2010.2089631 – ident: ref_29 doi: 10.3390/app10186626 – volume: 152 start-page: 23 year: 2017 ident: ref_28 article-title: Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.09.004 – volume: 4 start-page: 26 year: 2018 ident: ref_13 article-title: Classification of chronic kidney disease with proposed union based feature selection technique publication-title: Soc. Sci. Res. Netw. Electron. J. – volume: 15 start-page: 215 year: 2002 ident: ref_19 article-title: Predicting type 2 diabetes using an electronic nose-based artificial neural network analysis publication-title: Diabetes Nutr. Metab. – ident: ref_30 – volume: 56 start-page: 1015 year: 2009 ident: ref_40 article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease publication-title: IEEE Trans. Bio-Med. Eng. doi: 10.1109/TBME.2008.2005954 – volume: 115 start-page: 1 year: 2018 ident: ref_23 article-title: Comorbidity network for chronic disease: A novel approach to understand type 2 diabetes progression publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2018.04.001 – volume: 26 start-page: 185 year: 2014 ident: ref_44 article-title: High-dimensional feature selection by feature-wise kernelized lasso publication-title: Neural Comput. doi: 10.1162/NECO_a_00537 – volume: 30 start-page: 987 year: 2018 ident: ref_26 article-title: Similarity-based attribute weighting methods via clustering algorithms in the classification of imbalanced medical datasets publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3471-8 – volume: 7 start-page: 102232 year: 2019 ident: ref_55 article-title: DMP_MI: An effective diabetes mellitus classification algorithm on imbalanced data with missing values publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929866 – volume: 313 start-page: 504 year: 2006 ident: ref_49 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 111 start-page: 714 year: 2020 ident: ref_12 article-title: Heart disease identification from patients’ social posts, machine learning solution on spark publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.09.056 – volume: 127 start-page: 24 year: 2020 ident: ref_24 article-title: Prediction of chronic diseases with multi-label neural network publication-title: IEEE Access – volume: 26 start-page: 437 year: 2015 ident: ref_25 article-title: Hybrid intelligent system-based rough set and ensemble classifier for breast cancer diagnosis publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1731-9 – volume: 122 start-page: 191 year: 2015 ident: ref_20 article-title: Generalized discriminant analysis for congestive heart failure risk assessment based on long-term heart rate variability publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2015.08.007 – volume: 67 start-page: 764 year: 2017 ident: ref_27 article-title: RST-BatMiner: A fuzzy rule miner integrating rough set feature selection and bat optimization for detection of diabetes disease publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.032 – ident: ref_22 doi: 10.1186/s12859-022-04965-8 – volume: 8 start-page: 3921 year: 2011 ident: ref_45 article-title: A novel relief feature selection algorithm based on mean-variance model publication-title: J. Inf. Comput. Sci. – volume: 16 start-page: 153 year: 2003 ident: ref_48 article-title: Locality preserving projections publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_6 doi: 10.1109/BIBE.2017.00-39 – ident: ref_36 – volume: 43 start-page: 570 year: 1995 ident: ref_39 article-title: Breast cancer diagnosis and prognosis via linear programming publication-title: Oper. Res. doi: 10.1287/opre.43.4.570 – volume: 71 start-page: 816 year: 2018 ident: ref_52 article-title: The deep kernelized autoencoder publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.029 |
| SSID | ssj0000913810 |
| Score | 2.2569485 |
| Snippet | Chronic diseases are severe and life-threatening, and their accurate early diagnosis is difficult. Machine-learning-based processes of data collected from the... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 7322 |
| SubjectTerms | Accuracy Algorithms Cardiovascular disease Chronic diseases Chronic illnesses Decision trees Deep learning diamond-like feature learning Discriminant analysis envelope learning Feature selection feature-embedded stacked sparse autoencoder Machine learning Neural networks Physiology recognition of chronic disease sample-pair envelope concatenation Sensors Type 2 diabetes wearable sensor monitoring |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAPQAuoCy3yoRIPKSKx48Q5oS1sxWm1KiBV4mA5Y7ustE3KJuX3M5P1Ll0JuPSYeCI5mrdn_A1jJ2jhbOasTTLA3CT3KSRW2zQJRZUFq0QAa4dhE-V0qi8uqlk8cOtiW-XaJg6G2rVAZ-TvqeJXknPSH65_JjQ1iqqrcYTGfbZLSGUo57unk-nsfHPKQqiXOktXF_Mk5vdUF85khk5biC1XNCD2_8suD87m7PFdt_mEPYphJh-v5GKf3fPNAdu7BT54wPajWnf8TcSefvuUff9iCS44mdn5kk-aoaHI809zmknk-Pimbwn40nla7PxVvfB8vLjEDfQ_rjjGvzyC7eInQ-GHn68blNrmGft2Nvn68XMS5y8kgGFFn4DwqvK1LUPq8gwNUSlErfCxCLhSSx0qUEUtpNUe8zrIHDVN1V5Y5UTutHzOdpq28YeMY9inlHfKpZXLoUbhqASUXmoAGUCnI_ZuzQoDEZycZmQsDCYpxDdzi28jdrIhvl5hcvyd7JR4uiEhIO3hRbu8NFEvjcw9uvEgbClcXgltdZCVgrR01hWF9iP2miTCkLrjhsDGWwv4WwScZcYlJthU7MxH7GiLEtUUtpfXAmOimejMH2l58f_ll-whzblf9agdsZ1-eeOP2QP41c-75aso9b8BTTwMmw priority: 102 providerName: ProQuest |
| Title | Sample-Pair Envelope Diamond Autoencoder Ensemble Algorithm for Chronic Disease Recognition |
| URI | https://www.proquest.com/docview/2829712938 https://doaj.org/article/34e413f2a72d4928a8f395c07dad668e |
| Volume | 13 |
| WOSCitedRecordID | wos001016941100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_k9EEfxDsVV88jDwd-QLFN2iZ53NM99MGlnAonPoQ0H7qw15Xdnn-_M2322AXFFx_TTCCdzExmmMlvAE7RwtnCW5sVDmOTMuQus8rmWax1EW3Fo7N2aDYh53N1eambnVZfVBM2wgOPjHsjyoB2NnIruS81V1ZFoSuXS299XatA1jeXeieYGmywLgi6anyQJzCup3xwIQq8rDnfu4IGpP6_2ePhkjl_APeTd8im464O4VbojuDeDmbgERwmbdywlwky-tVD-PbJEspv1tjFms26oQ4osHcLaiXk2fS6XxFepQ80uQlX7TKw6fL7ar3of1wxdFtZwsjFJUO-hl1s64pW3SP4cj77_PZ9ltomZA69gT5zPFQ6tFbG3JcF2g_JeVvhsI440woVtavqlgurAoZjrvBU69QGbivPS6_EYzjoVl14Agy9taoKvvK59qVr8Uw1dzII5ZyITuUTeL3lpHEJU5xaWywNxhbEdrPD9gmc3hD_HKE0_kx2RkdyQ0L418MHlAqTpML8Syom8IIO1JCW4oacTY8N8LcI78pMJcbFlKMsJ3C8R4na5fantyJhknZvDGWfJTlK6un_2OwzuEtN7McCtGM46NfX4Tnccb_6xWZ9ArfPZvPm4mQQcBw1Hz42X38D4AAAOw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwAFpALBTwoYiHFJHYedgHhBbaqqu2qxUUqRWH4NhOWWmblN0UxJ_iNzKTx9KVgFsPHBM7URx_nodn_A3AJko4HVitvcCgbxI633haat_LYxXkOuK50bouNpGMRvLoSI1X4Gd3FobSKjuZWAtqWxraI39FEb-ElJN8c_bVo6pRFF3tSmg0sNhzP76jyzZ_PdzC-X3K-c724btdr60q4BlUlpVnuIuUy3SS-zYMcHklnGcRXsY5tmRC5spEccaFlg69FRNYSgXKHNeR5aGVAt97BVZDAnsPVsfDg_HxYleHWDZl4DcHAYVQPsWhAxGgkcD5kuqrKwT8TQ_Uym3n1v_2W27DzdaMZoMG92uw4op1uHGBXHEd1lqxNWfPW27tF3fg0wdNdMjeWE9mbLuoE6Yc25pQzSXLBudVScSe1lHj3J1mU8cG0xMccPXllKF9z1oyYXykDmyx910CVlnchY-XMuR70CvKwt0HhmZtFDkbWV_Z0GQIfsVN4oQ0RuRG-n142U19alrydaoBMk3RCSOcpBdw0ofNReezhnPkz93eEoYWXYgovL5Rzk7SVu6kInRopuRcJ9yGikstc6Ei4ydW2ziWrg_PCIEpiTP8IKPbUxk4LCIGSwdJFCoK5oZ92FjqiWLILDd3AE1bMThPf6Pzwb-bn8C13cOD_XR_ONp7CNc5WpJNPt4G9KrZuXsEV823ajKfPW5XHIPPl43mX5RFaf0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwAFpALBTwoYiHFDVxXs4BoYXtilVhFfGQijgEx3bKStukbFIQf41fx0ziLF0JuPXAMRknipNvHs6MvwHYRQsnPS2l4ylcmwTGVY4U0nWKKPEKGfJCSdk2m4hnM3F4mKQb8LPfC0Nllb1NbA21rhT9I9-jjF9MzknsFbYsIh1Pnp98daiDFGVa-3YaHUQOzI_vuHyrn03H-K0fcj7Zf__ylWM7DDgKHWfjKG7CxOQyLlwdeKhqMed5iIdRgZLcF0WiwijnvhQGVy7K01QWlBsuQ80DLXy87wXYxJA84APYTKdv0o-rPzzEuCk8t9sU6PuJSzlpz_cwYOB8zQ223QL-5hNaRze59j-_outw1YbXbNTpwxZsmHIbrpwhXdyGLWvOavbYcm4_uQGf3kmiSXZSOV-y_bItpDJsPKdeTJqNTpuKCD-1IWFtjvOFYaPFEU64-XLMMO5nlmQYL2kTXuxtX5hVlTfhw7lM-RYMyqo0t4FhuBuGRofaTXSgclSKhKvY-EIpv1DCHcLTHgaZsqTs1BtkkeHijDCTncHMEHZXg086LpI_D3tBeFoNIQLx9kS1PMqsPcr8wGD4UnAZcx0kXEhR-Emo3FhLHUXCDOERoTEjM4cPpKTdrYHTIsKwbBSHQUJJ3mAIO2sj0TypdXEP1syaxzr7jdQ7_xY_gEsI4ez1dHZwFy5zDDC7Mr0dGDTLU3MPLqpvzbxe3rfKx-DzeYP5F_sgcr0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample-Pair+Envelope+Diamond+Autoencoder+Ensemble+Algorithm+for+Chronic+Disease+Recognition&rft.jtitle=Applied+sciences&rft.au=Zhang%2C+Yi&rft.au=Ma%2C+Jie&rft.au=Qin%2C+Xiaolin&rft.au=Li%2C+Yongming&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=12&rft_id=info:doi/10.3390%2Fapp13127322&rft.externalDocID=A754973954 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |