Strong Convergence Theorem by a New Hybrid Method for Equilibrium Problems and Relatively Nonexpansive Mappings

We prove a strong convergence theorem for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a relatively nonexpansive mapping in a Banach space by using a new hybrid method. Using this theorem, we obtain two new results for finding a solution o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Fixed Point Theory and Applications Ročník 2008; s. 1 - 12
Hlavní autori: Takahashi, Wataru, Zembayashi, Kei
Médium: Journal Article
Jazyk:English
Japanese
Vydavateľské údaje: Springer Science and Business Media LLC 01.01.2008
SpringerOpen
Predmet:
ISSN:1687-1820, 1687-1812
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We prove a strong convergence theorem for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a relatively nonexpansive mapping in a Banach space by using a new hybrid method. Using this theorem, we obtain two new results for finding a solution of an equilibrium problem and a fixed point of a relatively nonexpnasive mapping in a Banach space.
ISSN:1687-1820
1687-1812
DOI:10.1155/2008/528476