Recent advances in multi-objective whale optimization algorithm, its versions and applications

Multi-objective optimization (MO) addresses problems involving multiple conflicting objectives, requiring effective techniques to identify Pareto optimal solutions. Among the numerous MO approaches, the Multi-Objective Whale Optimization Algorithm (MOWOA) has emerged as a robust metaheuristic inspir...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of King Saud University. Computer and information sciences Ročník 37; číslo 7; s. 200 - 38
Hlavní autori: Makhadmeh, Sharif Naser, Kassaymeh, Sofian, Rjoub, Gaith, Bataineh, Bilal, Sanjalawe, Yousef, Al-Betar, Mohammed Azmi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.09.2025
Springer Nature B.V
Springer
Predmet:
ISSN:1319-1578, 2213-1248, 1319-1578
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Multi-objective optimization (MO) addresses problems involving multiple conflicting objectives, requiring effective techniques to identify Pareto optimal solutions. Among the numerous MO approaches, the Multi-Objective Whale Optimization Algorithm (MOWOA) has emerged as a robust metaheuristic inspired by the bubble-net hunting strategy of humpback whales. This algorithm excels in solving optimization problems by combining global and local search capabilities through encircling prey, spiral bubble-net attacks, and random search mechanisms. This paper provides an in-depth review of MOWOA, examining its theoretical foundation, evolution, variations, and applications across various domains. Additionally, the review critically evaluates MOWOA’s strengths, including effective diversity maintenance and leader selection, as well as its limitations when addressing large-scale problems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1319-1578
2213-1248
1319-1578
DOI:10.1007/s44443-025-00184-2