An ANN to Predict Ground Condition ahead of Tunnel Face using TBM Operational Data

This paper presents an artificial neural network (ANN) model that predicts ground conditions ahead of a tunnel face by using shield tunnel boring machine (TBM) data obtained during the tunneling operation. The primary advantage of the proposed technique is that, by using TBM data, no additional data...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:KSCE Journal of Civil Engineering Ročník 23; číslo 7; s. 3200 - 3206
Hlavní autoři: Jung, Jee-Hee, Chung, Heeyoung, Kwon, Young-Sam, Lee, In-Mo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Seoul Korean Society of Civil Engineers 01.07.2019
Springer Nature B.V
대한토목학회
Témata:
ISSN:1226-7988, 1976-3808
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents an artificial neural network (ANN) model that predicts ground conditions ahead of a tunnel face by using shield tunnel boring machine (TBM) data obtained during the tunneling operation. The primary advantage of the proposed technique is that, by using TBM data, no additional data acquisition device is required. Ground type classifications and machine data normalization methods are introduced to maintain the consistency of the measured data and improve prediction accuracy. The efficacy of the proposed model is demonstrated by its 96% accuracy in predicting ground type one ring ahead of the tunnel face.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1226-7988
1976-3808
DOI:10.1007/s12205-019-1460-9