The Grassmannian Atlas: A General Framework for Exploring Linear Projections of High-Dimensional Data
Linear projections are one of the most common approaches to visualize high‐dimensional data. Since the space of possible projections is large, existing systems usually select a small set of interesting projections by ranking a large set of candidate projections based on a chosen quality measure. How...
Saved in:
| Published in: | Computer graphics forum Vol. 35; no. 3; pp. 1 - 10 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Blackwell Publishing Ltd
01.06.2016
Wiley |
| Subjects: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Linear projections are one of the most common approaches to visualize high‐dimensional data. Since the space of possible projections is large, existing systems usually select a small set of interesting projections by ranking a large set of candidate projections based on a chosen quality measure. However, while highly ranked projections can be informative, some lower ranked ones could offer important complementary information. Therefore, selection based on ranking may miss projections that are important to provide a global picture of the data. The proposed work fills this gap by presenting the Grassmannian Atlas, a framework that captures the global structures of quality measures in the space of all projections, which enables a systematic exploration of many complementary projections and provides new insights into the properties of existing quality measures. |
|---|---|
| AbstractList | Linear projections are one of the most common approaches to visualize high-dimensional data. Since the space of possible projections is large, existing systems usually select a small set of interesting projections by ranking a large set of candidate projections based on a chosen quality measure. However, while highly ranked projections can be informative, some lower ranked ones could offer important complementary information. Therefore, selection based on ranking may miss projections that are important to provide a global picture of the data. The proposed work fills this gap by presenting the Grassmannian Atlas, a framework that captures the global structures of quality measures in the space of all projections, which enables a systematic exploration of many complementary projections and provides new insights into the properties of existing quality measures. Linear projections are one of the most common approaches to visualize high-dimensional data. Since the space of possible projections is large, existing systems usually select a small set of interesting projections by ranking a large set of candidate projections based on a chosen quality measure. However, while highly ranked projections can be informative, some lower ranked ones could offer important complementary information. Therefore, selection based on ranking may miss projections that are important to provide a global picture of the data. Here, the proposed work fills this gap by presenting the Grassmannian Atlas, a framework that captures the global structures of quality measures in the space of all projections, which enables a systematic exploration of many complementary projections and provides new insights into the properties of existing quality measures. |
| Author | Summa, B. Jayaraman, J. J. Wang, B. Liu, S. Bremer, P.-T Pascucci, V. |
| Author_xml | – sequence: 1 givenname: S. surname: Liu fullname: Liu, S. organization: Scientific Computing and Imaging Institute, University of Utah – sequence: 2 givenname: P.-T surname: Bremer fullname: Bremer, P.-T organization: Lawrence Livermore National Laboratory – sequence: 3 givenname: J. J. surname: Jayaraman fullname: Jayaraman, J. J. organization: Lawrence Livermore National Laboratory – sequence: 4 givenname: B. surname: Wang fullname: Wang, B. organization: Scientific Computing and Imaging Institute, University of Utah – sequence: 5 givenname: B. surname: Summa fullname: Summa, B. organization: Department of Computer Science, Tulane University – sequence: 6 givenname: V. surname: Pascucci fullname: Pascucci, V. organization: Scientific Computing and Imaging Institute, University of Utah |
| BackLink | https://www.osti.gov/servlets/purl/1417962$$D View this record in Osti.gov |
| BookMark | eNp1kcFuEzEQhi1UJNLCgTew4AKHbe21197lFtJmWymCHorgZk3d2cTprp3aG7V9exzScqjAF1uj7xt7_B-SAx88EvKes2Oe14lddse8rLV6RSZcKl3UqmoOyITxfNasqt6Qw5TWjDGpVTUheLVC2kZIaQDvHXg6HXtIX-iUtugxQk_nEQa8D_GWdiHSs4dNH6LzS7pwHiHSyxjWaEcXfKKho-duuSpO3YA-5VLWT2GEt-R1B33Cd0_7EfkxP7uanReL7-3FbLoorBRMFYiKoy01u-alkIxVWIJWNbISEYQFVnF-LZABILAaa3aDjRRdqW-skFZacUQ-7PuGNDqTrBvRrmzwPj_QcMl1o8oMfdpDmxjutphGM7hkse_BY9gmw-uyqiRvZJPRjy_QddjGPNWOYlzqhgmVqZM9ZWNIKWJn8sWw-5ExgusNZ2aXjcnZmD_ZZOPzC2MT3QDx8Z_sU_d71-Pj_0Eza-fPRrE3XBrx4a8B8dYoLXRlfn5rDft1OfsqxdwsxG9Cza2o |
| CitedBy_id | crossref_primary_10_1109_TVCG_2020_3011155 crossref_primary_10_1111_cgf_13416 crossref_primary_10_1007_s12650_017_0431_9 crossref_primary_10_1109_TVCG_2020_3030432 crossref_primary_10_1007_s12650_018_0531_1 crossref_primary_10_1109_TVCG_2017_2705189 crossref_primary_10_1109_TVCG_2019_2934812 crossref_primary_10_1016_j_jvlc_2018_08_003 |
| Cites_doi | 10.1109/VAST.2012.6400488 10.1057/palgrave.ivs.9500091 10.1111/cgf.12366 10.1198/106186005X77702 10.1137/0906011 10.1109/TVCG.2006.94 10.1057/palgrave.ivs.9500053 10.1145/312129.312199 10.1016/j.neucom.2012.11.046 10.1002/0470013192.bsa501 10.1109/MSP.2010.939739 10.1007/978-1-4757-2189-8 10.1109/TVCG.2011.229 10.1109/TVCG.2010.213 10.1109/TVCG.2011.244 10.2307/1390644 10.1109/LDAV.2014.7013202 10.1109/TVCG.2015.2467132 10.1016/S0167-9473(02)00286-4 10.1109/T-C.1974.224051 10.1198/106186008X318440 |
| ContentType | Journal Article |
| Copyright | 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2016 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2016 The Eurographics Association and John Wiley & Sons Ltd. |
| CorporateAuthor | Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) |
| CorporateAuthor_xml | – name: Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 OIOZB OTOTI |
| DOI | 10.1111/cgf.12876 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 10 |
| ExternalDocumentID | 1417962 4107219961 10_1111_cgf_12876 CGF12876 ark_67375_WNG_0XPCB43F_L |
| Genre | article Feature |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D F28 FR3 AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE OIOZB OTOTI WRC |
| ID | FETCH-LOGICAL-c4306-ee61ec270b1234005e2a768e02eea3ca0511b3e0aaea08e80de943f27dc34c4c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379912300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Tue Nov 05 04:35:38 EST 2024 Fri Sep 05 09:58:57 EDT 2025 Sun Nov 09 08:20:23 EST 2025 Sat Nov 29 03:41:13 EST 2025 Tue Nov 18 21:16:30 EST 2025 Sun Sep 21 06:19:21 EDT 2025 Sun Sep 21 06:21:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4306-ee61ec270b1234005e2a768e02eea3ca0511b3e0aaea08e80de943f27dc34c4c3 |
| Notes | istex:BE613F9CEA7307F484522B99C9C60CE3957EF235 ArticleID:CGF12876 Supporting Information ark:/67375/WNG-0XPCB43F-L SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 USDOE AC52-07NA27344; EE0004449; NA0002375; SC0007446; SC0010498 National Science Foundation (NSF) LLNL-JRNL-733805 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1417962 |
| PQID | 1801479036 |
| PQPubID | 30877 |
| PageCount | 10 |
| ParticipantIDs | osti_scitechconnect_1417962 proquest_miscellaneous_1825541949 proquest_journals_1801479036 crossref_citationtrail_10_1111_cgf_12876 crossref_primary_10_1111_cgf_12876 wiley_primary_10_1111_cgf_12876_CGF12876 istex_primary_ark_67375_WNG_0XPCB43F_L |
| PublicationCentury | 2000 |
| PublicationDate | June 2016 |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 06 year: 2016 text: June 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford – name: United States |
| PublicationTitle | Computer graphics forum |
| PublicationTitleAlternate | Computer Graphics Forum |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd Wiley |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
| References | Guo D.: Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Information Visualization 2, 4 (2003), 232-246. 2 Borg I., Groenen P.J.: Modern multidimensional scaling: Theory and applications. Springer Science & Business Media, 2005. 2 Mokbel B., Lueks W., Gisbrecht A., Hammer B.: Visualizing the quality of dimensionality reduction. Neurocomputing 112 (2013), 109-123. 2 Van der Maaten L., Hinton G.: Visualizing data using t-sne. Journal of Machine Learning Research 9, 2579-2605 (2008), 85. 8 Elmqvist N., Dragicevic P., Fekete J.-D.: Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. IEEE TVCG 14, 6 (2008), 1539-1148. 1 Correa C., Lindstrom P., Bremer P.-T.: Topological spines: A structure-preserving visual representation of scalar fields. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 1842-1851. 1, 5 Lehmann D., Theisel H.: Optimal sets of projections of high-dimensional data. Visualization and Computer Graphics, IEEE Transactions on 22, 1 (Jan 2016), 609-618. 2 Wilkinson L., Anand A., Grossman R.L.: Graph-theoretic scagnostics. In INFOVIS (2005), vol. 5, p. 21. 1, 2, 4 Gerber S., Bremer P.-T., Pascucci V., Whitaker R.: visual exploration of high dimensional scalar functions. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1271-1280. 5 Lee E.-K., Cook D., Klinke S., Lumley T.: Projection pursuit for exploratory supervised classification. Journal of Computational and Graphical Statistics 14, 4 (2005). 4 Buja A., Swayne D.F., Littman M.L., Dean N., Hofmann H., Chen L.: Data visualization with multidimensional scaling. Journal of Computational and Graphical Statistics 17, 2 (2008), 444-472. 4, 7 Bertini E., Tatu A., Keim D.: Quality metrics in high-dimensional data visualization: An overview and systematization. Visualization and Computer Graphics, IEEE Transactions on 17, 12 (2011), 2203-2212. 2 Friedman J., Tukey J.: A projection pursuit algorithm for exploratory data analysis. IEEE TC C-23, 9 (1974), 881-890. 1, 2, 4 Asimov D.: The grand tour: a tool for viewing multidimensional data. SIAM SISC 6, 1 (1985), 128-143. 1 Seo J., Shneiderman B.: Knowledge discovery in high-dimensional data: Case studies and a user survey for the rank-by-feature framework. IEEE TVCG 12, 3 (2006), 311-322. 2 Horton P., Nakai K.: A probabilistic classification system for predicting the cellular localization sites of proteins. In Ismb (1996), vol. 4, pp. 109-115. 8 Harris J.: Algebraic geometry: a first course, vol. 133. Springer Science & Business Media, 1992. 1, 3 Seo J., Shneiderman B.: A rank-by-feature framework for interactive exploration of multidimensional data. Information Visualization 4, 2 (2005), 96-113. 1 Swayne D.F., Temple Lang D., Buja A., Cook D.: GGobi: evolving from XGobi into an extensible framework for interactive data visualization. Computational Statistics & Data Analysis 43 (2003), 423-444. 1, 5 Liu S., Wang B., Bremer P.-T., Pascucci V.: Distortionguided structure-driven interactive exploration of high-dimensional data. Computer Graphics Forum 33, 3 (2014), 101-110. 2, 4 Jennings A., McKeown J.J.: Matrix computation. Wiley New York, 1992. 3 Wilkinson L., Anand A., Grossman R.: High-dimensional visual analytics: interactive exploration guided by pairwise views of point distributions. Visualization and Computer Graphics, IEEE Transactions on 12, 6 (2006), 1363-1372. 1, 2, 4 Jolliffe I.: Principal component analysis. Wiley Online Library, 2005. 6 Cook D., Buja A., Cabrera J.: Projection pursuit indexes based on orthonormal function expansions. Journal of Computational and Graphical Statistics 2, 3 (1993), 225-250. 4 2010; 16 2006; 12 2012 2011 1985; 6 2008; 17 1974; C‐23 2008; 14 2008; 9 2007 2006 2005 2004 1992 2011; 17 1993; 2 1999 1992; 133 2003; 2 2013; 112 2005; 5 2005; 4 2014 2013 1996; 4 2014; 33 2003; 43 2005; 14 2016; 22 e_1_2_7_5_2 Elmqvist N. (e_1_2_7_10_2) 2008; 14 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_26_2 e_1_2_7_28_2 e_1_2_7_29_2 Horton P. (e_1_2_7_15_2) 1996; 4 Jennings A. (e_1_2_7_16_2) 1992 Borg I. (e_1_2_7_4_2) 2005 e_1_2_7_24_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 Wilkinson L. (e_1_2_7_32_2) 2005; 5 Seo J. (e_1_2_7_27_2) 2006; 12 Seo J. (e_1_2_7_25_2) 2004 Van der Maaten L. (e_1_2_7_30_2) 2008; 9 Arthur D. (e_1_2_7_3_2) 2007 |
| References_xml | – reference: Horton P., Nakai K.: A probabilistic classification system for predicting the cellular localization sites of proteins. In Ismb (1996), vol. 4, pp. 109-115. 8 – reference: Gerber S., Bremer P.-T., Pascucci V., Whitaker R.: visual exploration of high dimensional scalar functions. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1271-1280. 5 – reference: Lehmann D., Theisel H.: Optimal sets of projections of high-dimensional data. Visualization and Computer Graphics, IEEE Transactions on 22, 1 (Jan 2016), 609-618. 2 – reference: Wilkinson L., Anand A., Grossman R.: High-dimensional visual analytics: interactive exploration guided by pairwise views of point distributions. Visualization and Computer Graphics, IEEE Transactions on 12, 6 (2006), 1363-1372. 1, 2, 4 – reference: Cook D., Buja A., Cabrera J.: Projection pursuit indexes based on orthonormal function expansions. Journal of Computational and Graphical Statistics 2, 3 (1993), 225-250. 4 – reference: Mokbel B., Lueks W., Gisbrecht A., Hammer B.: Visualizing the quality of dimensionality reduction. Neurocomputing 112 (2013), 109-123. 2 – reference: Seo J., Shneiderman B.: A rank-by-feature framework for interactive exploration of multidimensional data. Information Visualization 4, 2 (2005), 96-113. 1 – reference: Van der Maaten L., Hinton G.: Visualizing data using t-sne. Journal of Machine Learning Research 9, 2579-2605 (2008), 85. 8 – reference: Guo D.: Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Information Visualization 2, 4 (2003), 232-246. 2 – reference: Borg I., Groenen P.J.: Modern multidimensional scaling: Theory and applications. Springer Science & Business Media, 2005. 2 – reference: Buja A., Swayne D.F., Littman M.L., Dean N., Hofmann H., Chen L.: Data visualization with multidimensional scaling. Journal of Computational and Graphical Statistics 17, 2 (2008), 444-472. 4, 7 – reference: Asimov D.: The grand tour: a tool for viewing multidimensional data. SIAM SISC 6, 1 (1985), 128-143. 1 – reference: Friedman J., Tukey J.: A projection pursuit algorithm for exploratory data analysis. IEEE TC C-23, 9 (1974), 881-890. 1, 2, 4 – reference: Elmqvist N., Dragicevic P., Fekete J.-D.: Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. IEEE TVCG 14, 6 (2008), 1539-1148. 1 – reference: Wilkinson L., Anand A., Grossman R.L.: Graph-theoretic scagnostics. In INFOVIS (2005), vol. 5, p. 21. 1, 2, 4 – reference: Bertini E., Tatu A., Keim D.: Quality metrics in high-dimensional data visualization: An overview and systematization. Visualization and Computer Graphics, IEEE Transactions on 17, 12 (2011), 2203-2212. 2 – reference: Jennings A., McKeown J.J.: Matrix computation. Wiley New York, 1992. 3 – reference: Jolliffe I.: Principal component analysis. Wiley Online Library, 2005. 6 – reference: Correa C., Lindstrom P., Bremer P.-T.: Topological spines: A structure-preserving visual representation of scalar fields. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 1842-1851. 1, 5 – reference: Swayne D.F., Temple Lang D., Buja A., Cook D.: GGobi: evolving from XGobi into an extensible framework for interactive data visualization. Computational Statistics & Data Analysis 43 (2003), 423-444. 1, 5 – reference: Harris J.: Algebraic geometry: a first course, vol. 133. Springer Science & Business Media, 1992. 1, 3 – reference: Seo J., Shneiderman B.: Knowledge discovery in high-dimensional data: Case studies and a user survey for the rank-by-feature framework. IEEE TVCG 12, 3 (2006), 311-322. 2 – reference: Lee E.-K., Cook D., Klinke S., Lumley T.: Projection pursuit for exploratory supervised classification. Journal of Computational and Graphical Statistics 14, 4 (2005). 4 – reference: Liu S., Wang B., Bremer P.-T., Pascucci V.: Distortionguided structure-driven interactive exploration of high-dimensional data. Computer Graphics Forum 33, 3 (2014), 101-110. 2, 4 – year: 2011 – volume: 2 start-page: 225 issue: 3 year: 1993 end-page: 250 article-title: Projection pursuit indexes based on orthonormal function expansions publication-title: Journal of Computational and Graphical Statistics – year: 2005 – volume: 17 start-page: 444 issue: 2 year: 2008 end-page: 472 article-title: Data visualization with multidimensional scaling publication-title: Journal of Computational and Graphical Statistics – start-page: 1027 year: 2007 end-page: 1035 – volume: 14 start-page: 1539 issue: 6 year: 2008 end-page: 1148 article-title: Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation publication-title: IEEE TVCG – volume: 22 start-page: 609 issue: 1 year: 2016 end-page: 618 article-title: Optimal sets of projections of high‐dimensional data publication-title: Visualization and Computer Graphics, IEEE Transactions on – start-page: 63 year: 2012 end-page: 72 – volume: 112 start-page: 109 year: 2013 end-page: 123 article-title: Visualizing the quality of dimensionality reduction publication-title: Neurocomputing – year: 1992 – start-page: 65 year: 2004 end-page: 72 – volume: 16 start-page: 1271 issue: 6 year: 2010 end-page: 1280 article-title: visual exploration of high dimensional scalar functions publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 133 year: 1992 – start-page: 3111 year: 2013 end-page: 3119 – volume: 12 start-page: 311 issue: 3 year: 2006 end-page: 322 article-title: Knowledge discovery in high‐dimensional data: Case studies and a user survey for the rank‐by‐feature framework publication-title: IEEE TVCG – volume: 17 start-page: 1842 issue: 12 year: 2011 end-page: 1851 article-title: Topological spines: A structure‐preserving visual representation of scalar fields publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 9 start-page: 85 issue: 2579 year: 2008 end-page: 2605 article-title: Visualizing data using t‐sne publication-title: Journal of Machine Learning Research – volume: 6 start-page: 128 issue: 1 year: 1985 end-page: 143 article-title: The grand tour: a tool for viewing multidimensional data publication-title: SIAM SISC – volume: 2 start-page: 232 issue: 4 year: 2003 end-page: 246 article-title: Coordinating computational and visual approaches for interactive feature selection and multivariate clustering publication-title: Information Visualization – volume: 14 issue: 4 year: 2005 article-title: Projection pursuit for exploratory supervised classification publication-title: Journal of Computational and Graphical Statistics – volume: 5 start-page: 21 year: 2005 article-title: Graph‐theoretic scagnostics publication-title: INFOVIS – year: 2006 – volume: 4 start-page: 109 year: 1996 end-page: 115 article-title: A probabilistic classification system for predicting the cellular localization sites of proteins publication-title: Ismb – start-page: 84 year: 1999 end-page: 93 – volume: C‐23 start-page: 881 issue: 9 year: 1974 end-page: 890 article-title: A projection pursuit algorithm for exploratory data analysis publication-title: IEEE TC – start-page: 35 year: 2014 end-page: 42 – volume: 43 start-page: 423 year: 2003 end-page: 444 article-title: GGobi: evolving from XGobi into an extensible framework for interactive data visualization publication-title: Computational Statistics & Data Analysis – volume: 33 start-page: 101 issue: 3 year: 2014 end-page: 110 article-title: Distortionguided structure‐driven interactive exploration of high‐dimensional data publication-title: Computer Graphics Forum – volume: 4 start-page: 96 issue: 2 year: 2005 end-page: 113 article-title: A rank‐by‐feature framework for interactive exploration of multidimensional data publication-title: Information Visualization – volume: 12 start-page: 1363 issue: 6 year: 2006 end-page: 1372 article-title: High‐dimensional visual analytics: interactive exploration guided by pairwise views of point distributions publication-title: Visualization and Computer Graphics, IEEE Transactions on – volume: 17 start-page: 2203 issue: 12 year: 2011 end-page: 2212 article-title: Quality metrics in high‐dimensional data visualization: An overview and systematization publication-title: Visualization and Computer Graphics, IEEE Transactions on – ident: e_1_2_7_29_2 doi: 10.1109/VAST.2012.6400488 – ident: e_1_2_7_26_2 doi: 10.1057/palgrave.ivs.9500091 – start-page: 65 volume-title: Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on year: 2004 ident: e_1_2_7_25_2 – ident: e_1_2_7_20_2 doi: 10.1111/cgf.12366 – ident: e_1_2_7_18_2 doi: 10.1198/106186005X77702 – ident: e_1_2_7_2_2 doi: 10.1137/0906011 – ident: e_1_2_7_24_2 – volume: 9 start-page: 85 issue: 2579 year: 2008 ident: e_1_2_7_30_2 article-title: Visualizing data using t‐sne publication-title: Journal of Machine Learning Research – ident: e_1_2_7_33_2 doi: 10.1109/TVCG.2006.94 – volume-title: Matrix computation. year: 1992 ident: e_1_2_7_16_2 – ident: e_1_2_7_13_2 doi: 10.1057/palgrave.ivs.9500053 – ident: e_1_2_7_8_2 doi: 10.1145/312129.312199 – ident: e_1_2_7_23_2 doi: 10.1016/j.neucom.2012.11.046 – ident: e_1_2_7_17_2 doi: 10.1002/0470013192.bsa501 – ident: e_1_2_7_31_2 doi: 10.1109/MSP.2010.939739 – volume: 5 start-page: 21 year: 2005 ident: e_1_2_7_32_2 article-title: Graph‐theoretic scagnostics publication-title: INFOVIS – ident: e_1_2_7_14_2 doi: 10.1007/978-1-4757-2189-8 – ident: e_1_2_7_6_2 doi: 10.1109/TVCG.2011.229 – volume: 4 start-page: 109 year: 1996 ident: e_1_2_7_15_2 article-title: A probabilistic classification system for predicting the cellular localization sites of proteins publication-title: Ismb – ident: e_1_2_7_12_2 doi: 10.1109/TVCG.2010.213 – ident: e_1_2_7_9_2 doi: 10.1109/TVCG.2011.244 – volume: 14 start-page: 1539 issue: 6 year: 2008 ident: e_1_2_7_10_2 article-title: Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation publication-title: IEEE TVCG – ident: e_1_2_7_7_2 doi: 10.2307/1390644 – ident: e_1_2_7_21_2 doi: 10.1109/LDAV.2014.7013202 – ident: e_1_2_7_22_2 – ident: e_1_2_7_19_2 doi: 10.1109/TVCG.2015.2467132 – volume: 12 start-page: 311 issue: 3 year: 2006 ident: e_1_2_7_27_2 article-title: Knowledge discovery in high‐dimensional data: Case studies and a user survey for the rank‐by‐feature framework publication-title: IEEE TVCG – ident: e_1_2_7_28_2 doi: 10.1016/S0167-9473(02)00286-4 – volume-title: Modern multidimensional scaling: Theory and applications. year: 2005 ident: e_1_2_7_4_2 – ident: e_1_2_7_11_2 doi: 10.1109/T-C.1974.224051 – start-page: 1027 volume-title: Proceedings of the eighteenth annual ACM‐SIAM symposium on Discrete algorithms year: 2007 ident: e_1_2_7_3_2 – ident: e_1_2_7_5_2 doi: 10.1198/106186008X318440 |
| SSID | ssj0004765 |
| Score | 2.2284353 |
| Snippet | Linear projections are one of the most common approaches to visualize high‐dimensional data. Since the space of possible projections is large, existing systems... Linear projections are one of the most common approaches to visualize high-dimensional data. Since the space of possible projections is large, existing systems... |
| SourceID | osti proquest crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Analysis Categories and Subject Descriptors (according to ACM CCS) Computer Graphics Exploration I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation Line and curve generation MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE Picture/Image Generation Pictures Projection Ranking Studies Visualization |
| Title | The Grassmannian Atlas: A General Framework for Exploring Linear Projections of High-Dimensional Data |
| URI | https://api.istex.fr/ark:/67375/WNG-0XPCB43F-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12876 https://www.proquest.com/docview/1801479036 https://www.proquest.com/docview/1825541949 https://www.osti.gov/servlets/purl/1417962 |
| Volume | 35 |
| WOSCitedRecordID | wos000379912300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tLQc4LG8RdkEGIcQlKLGdF5xKS8qhqirEit4s23FWaJcUtVm0R34Cv5FfwkxedCWQkLhZyiRx7PnGM874G4DncVDwROvC1yLUvowihy0ufCmNkY6TSWxmepEsl-l6na0O4E1_Fqblhxg23AgZjb0mgGuz2wO5PS1f4ZOS-BqMOeqtHMF49iE_Wfw-FpnEUU_tTaQxHbEQJfIMN19ZjsY0spdonDcIrysu577j2qw8-a3_6vNtOOwcTjZpNeQOHLjqLtzcoyG8B6eoK2y-RTf6C1Uw0hWb1OhUv2YT1rFSs7zP4WLo5LIhcY9hKItQYat2P4dUmG1KRskjP7__mFHlgJb1g810re_DSf7u4_S93xVg8K3EUMJ3Lg6dxcE1uL4h2CPHNYYnLuDOaWE1Ajo0wgVaOx2kLg0Kl0lR8qSwQlppxQMYVZvKPQQmTWpMVPC0NAVxxBtsZBpfEEhhojLz4GU_D8p27ORUJONc9VEKjp1qxs6DZ4Po15aS409CL5rJHCT09oxy2JJIfVrOVbBeTd9KkauFB0c02wodDmLNtZReZGuMiNBSxdyD414JVAfunQqJcSfJcO334OlwGWFJ_1p05TYXJIOxmgwzSV_WqMTf-6qm87xpPPp30SO4gUCK26S1YxjV2wv3GK7bb_Xn3fZJh4RfquALdg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXSTgwBsRWsAghLikSmLnhbgsu2SLCKsVasXeLNtxKtSSRdsUceQn8Bv5JczkxVYCCYmbpUwSxzOfPeOMvwF4FnlFECtVuIr7yhVhaLEVcFcIrYUNaEpsNJ3Hi0WyWqXLHXjVn4Vp-SGGDTdCRjNfE8BpQ3oL5ea43MdHxdElGAs0o3AE49mH7Cj_fS4yjsKe25tYYzpmIcrkGW6-sB6NaWi_4ey8Rnxd8Dm3Pddm6clu_F-nb8L1zuVkk9ZGbsGOrW7DtS0iwjtwjNbC5ht0pD9TDSNVsUmNbvVLNmEdLzXL-iwuhm4uG1L3GAazCBa2bHd0yIjZumSUPvLz-48Z1Q5oeT_YTNXqLhxlbw6nB25XgsE1AoMJ19rItyaIPY0rHMI9tIHCAMV6gbWKG4WQ9jW3nlJWeYlNvMKmgpdBXBgujDD8HoyqdWXvAxM60TosgqTUBbHEa2ykCl_gCa7DMnXgRa8IaTp-ciqTcSr7OAXHTjZj58DTQfRLS8rxJ6HnjTYHCbU5oSy2OJQfF3PprZbT14JnMndgl9Qt0eUg3lxDCUamxpgI56oocGCvtwLZwftM-sS5E6e4-jvwZLiMwKS_Laqy63OSwWhN-KmgL2ts4u99ldN51jQe_LvoY7hycPg-l_nbxbtduIqwitoUtj0Y1Ztz-xAum6_1p7PNow4WvwCmHw9m |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_OWxF98Fusd2oUEV96tEn6Jb6su3YVl2URD_ctJGl6yJ3dY68nPvon-Df6lzjTL_dAQfAt0GmbZuaXzKST3wA8i4OCJ1oXvhah9mUUOWxx4UtpjHScpsRG0_NksUhXq2y5A6_6szAtP8Sw4UbIaOZrArg7LcotlNuj8gAflcSXYCSjLEZYjqYf8sP573ORSRz13N7EGtMxC1Emz3DzhfVoREP7DWfnNeLrgs-57bk2S09-4_86fROudy4nG7c2cgt2XHUbrm0REd6BI7QWNtugI_2Fahjpio1rdKtfsjHreKlZ3mdxMXRz2ZC6xzCYRbCwZbujQ0bM1iWj9JGf339MqXZAy_vBprrWd-Ewf_Nx8tbvSjD4VmIw4TsXh87yJDC4wiHcI8c1Bigu4M5pYTVCOjTCBVo7HaQuDQqXSVHypLBCWmnFPdit1pW7D0ya1Jio4GlpCmKJN9jINL4gkMJEZebBi14Rynb85FQm40T1cQqOnWrGzoOng-hpS8rxJ6HnjTYHCb05piy2JFKfFjMVrJaT11Lkau7BHqlboctBvLmWEoxsjTERzlUx92C_twLVwftMhcS5k2S4-nvwZLiMwKS_Lbpy63OSwWhNhpmkL2ts4u99VZNZ3jQe_LvoY7iynGL33y3e78FVRFXcZrDtw269OXcP4bL9Wn8-2zzqUPELGxIO4Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Grassmannian+Atlas%3A+A+General+Framework+for+Exploring+Linear+Projections+of+High%E2%80%90Dimensional+Data&rft.jtitle=Computer+graphics+forum&rft.au=Liu%2C+S.&rft.au=Bremer%2C+P.%E2%80%90T&rft.au=Jayaraman%2C+J.+J.&rft.au=Wang%2C+B.&rft.date=2016-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=3&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1111%2Fcgf.12876&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12876 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |