SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival

Accurately predicting the survival rate of cancer patients is crucial for aiding clinicians in planning appropriate treatment, reducing cancer-related medical expenses, and significantly enhancing patients’ quality of life. Multimodal prediction of cancer patient survival offers a more comprehensive...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine Vol. 172; p. 108301
Main Authors: Pan, Liangrui, Peng, Yijun, Li, Yan, Wang, Xiang, Liu, Wenjuan, Xu, Liwen, Liang, Qingchun, Peng, Shaoliang
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.04.2024
Elsevier Limited
Subjects:
ISSN:0010-4825, 1879-0534, 1879-0534
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurately predicting the survival rate of cancer patients is crucial for aiding clinicians in planning appropriate treatment, reducing cancer-related medical expenses, and significantly enhancing patients’ quality of life. Multimodal prediction of cancer patient survival offers a more comprehensive and precise approach. However, existing methods still grapple with challenges related to missing multimodal data and information interaction within modalities. This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders for robust multimodal prediction of cancer patient survival. SELECTOR comprises feature edge reconstruction, convolutional mask encoder, feature cross-fusion, and multimodal survival prediction modules. Initially, we construct a multimodal heterogeneous graph and employ the meta-path method for feature edge reconstruction, ensuring comprehensive incorporation of feature information from graph edges and effective embedding of nodes. To mitigate the impact of missing features within the modality on prediction accuracy, we devised a convolutional masked autoencoder (CMAE) to process the heterogeneous graph post-feature reconstruction. Subsequently, the feature cross-fusion module facilitates communication between modalities, ensuring that output features encompass all features of the modality and relevant information from other modalities. Extensive experiments and analysis on six cancer datasets from TCGA demonstrate that our method significantly outperforms state-of-the-art methods in both modality-missing and intra-modality information-confirmed cases. Our codes are made available at https://github.com/panliangrui/Selector. [Display omitted] •Construct a multimodal heterogeneous graph and propose the idea of a meta-path to perform edge reconstruction of features to fully consider the feature information of the edge of the graph and the effective embedding of nodes.•We propose a convolutional masked autoencoder (CMAE) to process the heterogeneous image after feature reconstruction. It mainly relies on the idea of sparse convolution in feature extraction. Only unmasked features are extracted.•A feature cross-communication module is designed to establish communication between multiple modalities, so that the output features include all features of the modality as well as relevant information of other modalities.•SELECTOR can effectively predict cancer patient survival in the presence of both within-modality and missing-modality data. Through extensive experimental verification, we found that this framework achieved the best prediction accuracy on six cancer multimodal datasets of TCGA.
AbstractList Accurately predicting the survival rate of cancer patients is crucial for aiding clinicians in planning appropriate treatment, reducing cancer-related medical expenses, and significantly enhancing patients' quality of life. Multimodal prediction of cancer patient survival offers a more comprehensive and precise approach. However, existing methods still grapple with challenges related to missing multimodal data and information interaction within modalities. This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders for robust multimodal prediction of cancer patient survival. SELECTOR comprises feature edge reconstruction, convolutional mask encoder, feature cross-fusion, and multimodal survival prediction modules. Initially, we construct a multimodal heterogeneous graph and employ the meta-path method for feature edge reconstruction, ensuring comprehensive incorporation of feature information from graph edges and effective embedding of nodes. To mitigate the impact of missing features within the modality on prediction accuracy, we devised a convolutional masked autoencoder (CMAE) to process the heterogeneous graph post-feature reconstruction. Subsequently, the feature cross-fusion module facilitates communication between modalities, ensuring that output features encompass all features of the modality and relevant information from other modalities. Extensive experiments and analysis on six cancer datasets from TCGA demonstrate that our method significantly outperforms state-of-the-art methods in both modality-missing and intra-modality information-confirmed cases. Our codes are made available at https://github.com/panliangrui/Selector.Accurately predicting the survival rate of cancer patients is crucial for aiding clinicians in planning appropriate treatment, reducing cancer-related medical expenses, and significantly enhancing patients' quality of life. Multimodal prediction of cancer patient survival offers a more comprehensive and precise approach. However, existing methods still grapple with challenges related to missing multimodal data and information interaction within modalities. This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders for robust multimodal prediction of cancer patient survival. SELECTOR comprises feature edge reconstruction, convolutional mask encoder, feature cross-fusion, and multimodal survival prediction modules. Initially, we construct a multimodal heterogeneous graph and employ the meta-path method for feature edge reconstruction, ensuring comprehensive incorporation of feature information from graph edges and effective embedding of nodes. To mitigate the impact of missing features within the modality on prediction accuracy, we devised a convolutional masked autoencoder (CMAE) to process the heterogeneous graph post-feature reconstruction. Subsequently, the feature cross-fusion module facilitates communication between modalities, ensuring that output features encompass all features of the modality and relevant information from other modalities. Extensive experiments and analysis on six cancer datasets from TCGA demonstrate that our method significantly outperforms state-of-the-art methods in both modality-missing and intra-modality information-confirmed cases. Our codes are made available at https://github.com/panliangrui/Selector.
Accurately predicting the survival rate of cancer patients is crucial for aiding clinicians in planning appropriate treatment, reducing cancer-related medical expenses, and significantly enhancing patients' quality of life. Multimodal prediction of cancer patient survival offers a more comprehensive and precise approach. However, existing methods still grapple with challenges related to missing multimodal data and information interaction within modalities. This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders for robust multimodal prediction of cancer patient survival. SELECTOR comprises feature edge reconstruction, convolutional mask encoder, feature cross-fusion, and multimodal survival prediction modules. Initially, we construct a multimodal heterogeneous graph and employ the meta-path method for feature edge reconstruction, ensuring comprehensive incorporation of feature information from graph edges and effective embedding of nodes. To mitigate the impact of missing features within the modality on prediction accuracy, we devised a convolutional masked autoencoder (CMAE) to process the heterogeneous graph post-feature reconstruction. Subsequently, the feature cross-fusion module facilitates communication between modalities, ensuring that output features encompass all features of the modality and relevant information from other modalities. Extensive experiments and analysis on six cancer datasets from TCGA demonstrate that our method significantly outperforms state-of-the-art methods in both modality-missing and intra-modality information-confirmed cases. Our codes are made available at https://github.com/panliangrui/Selector.
Accurately predicting the survival rate of cancer patients is crucial for aiding clinicians in planning appropriate treatment, reducing cancer-related medical expenses, and significantly enhancing patients’ quality of life. Multimodal prediction of cancer patient survival offers a more comprehensive and precise approach. However, existing methods still grapple with challenges related to missing multimodal data and information interaction within modalities. This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders for robust multimodal prediction of cancer patient survival. SELECTOR comprises feature edge reconstruction, convolutional mask encoder, feature cross-fusion, and multimodal survival prediction modules. Initially, we construct a multimodal heterogeneous graph and employ the meta-path method for feature edge reconstruction, ensuring comprehensive incorporation of feature information from graph edges and effective embedding of nodes. To mitigate the impact of missing features within the modality on prediction accuracy, we devised a convolutional masked autoencoder (CMAE) to process the heterogeneous graph post-feature reconstruction. Subsequently, the feature cross-fusion module facilitates communication between modalities, ensuring that output features encompass all features of the modality and relevant information from other modalities. Extensive experiments and analysis on six cancer datasets from TCGA demonstrate that our method significantly outperforms state-of-the-art methods in both modality-missing and intra-modality information-confirmed cases. Our codes are made available at https://github.com/panliangrui/Selector. [Display omitted] •Construct a multimodal heterogeneous graph and propose the idea of a meta-path to perform edge reconstruction of features to fully consider the feature information of the edge of the graph and the effective embedding of nodes.•We propose a convolutional masked autoencoder (CMAE) to process the heterogeneous image after feature reconstruction. It mainly relies on the idea of sparse convolution in feature extraction. Only unmasked features are extracted.•A feature cross-communication module is designed to establish communication between multiple modalities, so that the output features include all features of the modality as well as relevant information of other modalities.•SELECTOR can effectively predict cancer patient survival in the presence of both within-modality and missing-modality data. Through extensive experimental verification, we found that this framework achieved the best prediction accuracy on six cancer multimodal datasets of TCGA.
AbstractAccurately predicting the survival rate of cancer patients is crucial for aiding clinicians in planning appropriate treatment, reducing cancer-related medical expenses, and significantly enhancing patients’ quality of life. Multimodal prediction of cancer patient survival offers a more comprehensive and precise approach. However, existing methods still grapple with challenges related to missing multimodal data and information interaction within modalities. This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders for robust multimodal prediction of cancer patient survival. SELECTOR comprises feature edge reconstruction, convolutional mask encoder, feature cross-fusion, and multimodal survival prediction modules. Initially, we construct a multimodal heterogeneous graph and employ the meta-path method for feature edge reconstruction, ensuring comprehensive incorporation of feature information from graph edges and effective embedding of nodes. To mitigate the impact of missing features within the modality on prediction accuracy, we devised a convolutional masked autoencoder (CMAE) to process the heterogeneous graph post-feature reconstruction. Subsequently, the feature cross-fusion module facilitates communication between modalities, ensuring that output features encompass all features of the modality and relevant information from other modalities. Extensive experiments and analysis on six cancer datasets from TCGA demonstrate that our method significantly outperforms state-of-the-art methods in both modality-missing and intra-modality information-confirmed cases. Our codes are made available at https://github.com/panliangrui/Selector.
ArticleNumber 108301
Author Peng, Shaoliang
Wang, Xiang
Liang, Qingchun
Peng, Yijun
Li, Yan
Liu, Wenjuan
Pan, Liangrui
Xu, Liwen
Author_xml – sequence: 1
  givenname: Liangrui
  orcidid: 0000-0003-0565-4217
  surname: Pan
  fullname: Pan, Liangrui
  email: panlr@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, Hunan, China
– sequence: 2
  givenname: Yijun
  surname: Peng
  fullname: Peng, Yijun
  email: pengyijun@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, Hunan, China
– sequence: 3
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  email: s2310w1062@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, Hunan, China
– sequence: 4
  givenname: Xiang
  surname: Wang
  fullname: Wang, Xiang
  email: wangxiang@csu.edu.cn
  organization: Department of Thoracic Surgery, The second xiangya hospital, Central South University, Changsha, 410011, Hunan, China
– sequence: 5
  givenname: Wenjuan
  surname: Liu
  fullname: Liu, Wenjuan
  email: liuwenjuan89@hnu.edu
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, Hunan, China
– sequence: 6
  givenname: Liwen
  surname: Xu
  fullname: Xu, Liwen
  email: xuliwen@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, Hunan, China
– sequence: 7
  givenname: Qingchun
  surname: Liang
  fullname: Liang, Qingchun
  email: 503079@csu.edu.cn
  organization: Department of Pathology, The second xiangya hospital, Central South University, Changsha, 410011, Hunan, China
– sequence: 8
  givenname: Shaoliang
  surname: Peng
  fullname: Peng, Shaoliang
  email: slpeng@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, Hunan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38492453$$D View this record in MEDLINE/PubMed
BookMark eNqNks1qGzEUhYeS0jhpX6EIuulmXP2NLXURmhq3KRgCTboWGulOIntm5Eoah6z66tXUSQuGglcC8d0jnXPuWXHS-x6KAhE8JZjMPqynxnfb2vkO7JRiyvO1YJi8KCZEzGWJK8ZPignGBJdc0Oq0OItxjTHmmOFXxSkTXFJesUnx62a5Wi5ur79_RFeQIPg76MEPEd0Fvb1HPaQHHzbowaV7ZHy_8-2QnO91izodN2CRHpKH3ngLATU-oG5ok-u8zUTw9RAT2gawzoxTyDfI6N5kNA5h53a6fV28bHQb4c3TeV78-LK8XVyVq-uv3xaXq9JwKlPZSClA2IZoqi1rNDNcWGEo1NmRnPEZzpbqSjdMa2nmla6MZrW1jM0knmHDzov3e91t8D8HiEl1LhpoW_3HrqKyElSy-Vxk9N0BuvZDyJZHas44kZjQTL19ooY6t6C2wXU6PKrnaDNwsQdM8DEGaJRxSY8xpKBdqwhWY5dqrf51qcYu1b7LLCAOBJ7fOGL0834UcqQ7B0FF43JLuYgAJinr3TEiFwcipnW9M7rdwCPEv6EQFanC6mbctnHZKMe5jWoM8tP_BY77w28ulOvl
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108640
crossref_primary_10_1016_j_media_2024_103444
crossref_primary_10_1016_j_engappai_2024_109972
crossref_primary_10_1016_j_patcog_2025_111991
crossref_primary_10_12677_mos_2025_148562
Cites_doi 10.1158/1078-0432.CCR-23-2591
10.1609/aaai.v37i8.26192
10.1002/cac2.12328
10.1145/1390156.1390294
10.1109/CVPR42600.2020.00380
10.1038/s41598-021-92799-4
10.1038/s42256-023-00633-5
10.7150/ijbs.45050
10.1109/TBME.2020.2993278
10.1093/bioinformatics/btab185
10.1109/CVPR.2018.00961
10.1016/j.compbiomed.2015.02.006
10.1016/j.ygeno.2008.09.007
10.1093/bioinformatics/btac113
10.1093/bioinformatics/btad025
10.1109/TMI.2023.3253760
10.1038/s41698-022-00285-5
10.1109/TMI.2020.3021387
10.1038/s41596-018-0103-9
10.1609/aaai.v35i5.16600
10.1145/3292500.3330961
10.1109/TIP.2021.3139229
10.1186/s13073-021-00968-x
10.1109/CVPR52729.2023.02323
10.1093/bioinformatics/btab675
10.1016/j.bspc.2022.103824
10.1245/s10434-014-4281-6
10.1016/j.compbiomed.2014.02.006
10.1016/j.compbiomed.2023.106576
10.1038/s41551-020-00682-w
10.1200/JCO.2002.20.3.791
10.1016/j.ajog.2018.12.030
10.1016/j.media.2020.101789
10.1073/pnas.1717139115
10.1093/bioinformatics/btz342
10.5114/wo.2014.47136
10.1109/CVPR52729.2023.00213
10.1016/j.eswa.2022.117114
10.1016/j.ccell.2022.07.004
10.1016/j.ins.2021.06.058
10.1145/3214306
10.1002/sim.2174
10.1016/j.media.2021.102032
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
2024. Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
– notice: 2024. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
NAPCQ
P64
7X8
DOI 10.1016/j.compbiomed.2024.108301
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Computer Science Collection
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Nursing & Allied Health Premium

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 108301
ExternalDocumentID 38492453
10_1016_j_compbiomed_2024_108301
S0010482524003858
1_s2_0_S0010482524003858
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
9DU
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c429t-f998e8df1a2ad3fa3c48d8c2eb40396460384b5af3aa9c75a5ca3bdd3369060c3
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 08:43:32 EDT 2025
Tue Oct 07 06:15:39 EDT 2025
Thu Apr 03 07:00:10 EDT 2025
Tue Nov 18 21:49:52 EST 2025
Sat Nov 29 05:31:46 EST 2025
Sat Oct 12 15:53:11 EDT 2024
Tue Feb 25 20:08:39 EST 2025
Tue Oct 14 19:37:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Missing
Heterogeneous graph
Multimodal
Robust
Convolutional mask encoder
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-f998e8df1a2ad3fa3c48d8c2eb40396460384b5af3aa9c75a5ca3bdd3369060c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0565-4217
PMID 38492453
PQID 2973419012
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2958293778
proquest_journals_2973419012
pubmed_primary_38492453
crossref_citationtrail_10_1016_j_compbiomed_2024_108301
crossref_primary_10_1016_j_compbiomed_2024_108301
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2024_108301
elsevier_clinicalkeyesjournals_1_s2_0_S0010482524003858
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2024_108301
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Li, Wu, Li, Wang (b19) 2022; 38
Ma, Yan, Chai, Hou (b52) 2022; 38
Deng, Zeng, Luo, Kong, Shi, Li, Zhang (b7) 2021; 576
Liang, Wang, Lin, Chen, Yang, Zheng, Li (b13) 2020; 16
Lu, Williamson, Chen, Chen, Barbieri, Mahmood (b21) 2021; 5
Xie, Gu, Guo, Qi, Guibas, Litany (b45) 2020
Thorp (b38) 2023
Chen, Lu, Williamson, Chen, Lipkova, Noor, Shaban, Shady, Williams, Joo (b22) 2022; 40
Wang, Zeng, Chen, Zhao, Chen (b60) 2022; 202
Yao, Zhu, Jonnagaddala, Hawkins, Huang (b9) 2020; 65
Shao, Bian, Chen, Wang, Zhang, Ji (b27) 2021; 34
Tomczak, Czerwińska, Wiznerowicz (b47) 2015; 2015
Matsuo, Purushotham, Jiang, Mandelbaum, Takiuchi, Liu, Roman (b51) 2019; 220
García-Laencina, Abreu, Abreu, Afonoso (b4) 2015; 59
Xie, Liu (b54) 2005; 24
Benovoy, Drouin (b58) 2009; 93
Reimand, Isserlin, Voisin, Kucera, Tannus-Lopes, Rostamianfar, Wadi, Meyer, Wong, Xu (b48) 2019; 14
Cheerla, Gevaert (b31) 2019; 35
Pan, Liu, Feng, Liu, Peng (b6) 2023
Vale-Silva, Rohr (b30) 2021; 11
Wang, Li, Reddy (b50) 2019; 51
Wu, Shi, Wang, Li (b17) 2023; 39
Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie, Convnext v2: Co-designing and scaling convnets with masked autoencoders, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 16133–16142.
Gao, Ma, Li, Lin, Dai, Qiao (b61) 2022
Pan, Dou, Feng, Xu, Peng (b12) 2023
Liu, Fu, Yang, Deng, Zhong, Zheng (b14) 2020; 68
Xin Lin, Changxing Ding, Jinquan Zeng, Dacheng Tao, Tao Gps-net: Graph property sensing network for scene graph generation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3746–3753.
Chen, Ke, Chiu (b15) 2014; 48
Wang, Li, Wang, Li (b18) 2021; 37
Jaume, Vaidya, Chen, Williamson, Liang, Mahmood (b24) 2023
Islam, Seenivasan, Ming, Ren (b55) 2020
QuanLin Wu, Hang Ye, Yuntian Gu, Huishuai Zhang, Liwei Wang, Di He, Denoising masked autoencoders help robust classification, in: The Eleventh International Conference on Learning Representations, 2022.
Christopher Choy, JunYoung Gwak, Silvio Savarese, 4d spatio-temporal convnets: Minkowski convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 3075–3084.
Mobadersany, Yousefi, Amgad, Gutman, Barnholtz-Sloan, Velázquez Vega, Brat, Cooper (b29) 2018; 115
Yutong Bai, Zeyu Wang, Junfei Xiao, Chen Wei, Huiyu Wang, Alan L. Yuille, Yuyin Zhou, Cihang Xie, Masked autoencoders enable efficient knowledge distillers, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 24256–24265.
Fu, Patrick, Yang, Feng, Kim (b20) 2023; 154
Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick, Masked autoencoders are scalable vision learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16000–16009.
Tianhong Li, Huiwen Chang, Shlok Mishra, Han Zhang, Dina Katabi, Dilip Krishnan, Mage: Masked generative encoder to unify representation learning and image synthesis, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 2142–2152.
Riasatian, Babaie, Maleki, Kalra, Valipour, Hemati, Zaveri, Safarpoor, Shafiei, Afshari (b43) 2021; 70
Steyaert, Pizurica, Nagaraj, Khandelwal, Hernandez-Boussard, Gentles, Gevaert (b16) 2023; 5
Di, Zhang, Lei, Tian, Gao (b10) 2022; 31
Yijun Tian, Kaiwen Dong, Chunhui Zhang, Chuxu Zhang, Nitesh V. Chawla, Heterogeneous graph masked autoencoders, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 9997–10005.
Pan, Liu, Dou, Wang, Feng, Rong, Xu, Peng (b3) 2023
Richard J. Chen, Ming Y. Lu, Wei-Hung Weng, Tiffany Y. Chen, Drew F.K. Williamson, Trevor Manz, Maha Shady, Faisal Mahmood, Multimodal co-attention transformer for survival prediction in gigapixel whole slide images, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 4015–4025.
Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, Yanfang Ye, Heterogeneous graph structure learning for graph neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 4697–4705.
Huang, Jin, Lu, Hou, Cheng, Fu, Shen, Feng (b41) 2023
Williams, Zaidi, Sengupta (b1) 2023; 29
Kattan, Leung, Brennan (b49) 2002; 20
Brenner, Schöttker, Niedermaier (b2) 2022; 42
Benjamin Graham, Martin Engelcke, Laurens Van Der Maaten, 3d semantic segmentation with submanifold sparse convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9224–9232.
Wang, Wang, Hu, Li, Fan, Otter, Sam, Gou, Hu, Kwok (b57) 2022; 6
Pan, Wang, Wang, Ji, Liu, Chongcheawchamnan, Yuan, Peng (b11) 2022; 77
Qiankun Liu, Zhentao Tan, Dongdong Chen, Qi Chu, Xiyang Dai, Yinpeng Chen, Mengchen Liu, Lu Yuan, Nenghai Yu, Reduce information loss in transformers for pluralistic image inpainting, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11347–11357.
Hou, Lin, Yu, Qin, Yu, Wang (b23) 2023
Ilse, Tomczak, Welling (b25) 2018
Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, Nitesh V. Chawla, Heterogeneous graph neural network, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 793–803.
Li, Zhou, Dvornek, Zhang, Zhuang, Ventola, Duncan (b56) 2020
He, Liu, Zuo, Shi, Jing (b8) 2023; Vol. 88
Tran, Kondrashova, Bradley, Williams, Pearson, Waddell (b5) 2021; 13
Miyamoto, Baba, Sakamoto, Ohuchi, Tokunaga, Kurashige, Hiyoshi, Iwagami, Yoshida, Yoshida (b53) 2015; 22
Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1096–1103.
Chen, Lu, Wang, Williamson, Rodig, Lindeman, Mahmood (b28) 2020; 41
Xie (10.1016/j.compbiomed.2024.108301_b54) 2005; 24
Fu (10.1016/j.compbiomed.2024.108301_b20) 2023; 154
10.1016/j.compbiomed.2024.108301_b62
Jaume (10.1016/j.compbiomed.2024.108301_b24) 2023
Cheerla (10.1016/j.compbiomed.2024.108301_b31) 2019; 35
García-Laencina (10.1016/j.compbiomed.2024.108301_b4) 2015; 59
Li (10.1016/j.compbiomed.2024.108301_b56) 2020
Xie (10.1016/j.compbiomed.2024.108301_b45) 2020
Liang (10.1016/j.compbiomed.2024.108301_b13) 2020; 16
10.1016/j.compbiomed.2024.108301_b26
Brenner (10.1016/j.compbiomed.2024.108301_b2) 2022; 42
Benovoy (10.1016/j.compbiomed.2024.108301_b58) 2009; 93
He (10.1016/j.compbiomed.2024.108301_b8) 2023; Vol. 88
Pan (10.1016/j.compbiomed.2024.108301_b6) 2023
Wang (10.1016/j.compbiomed.2024.108301_b50) 2019; 51
Chen (10.1016/j.compbiomed.2024.108301_b15) 2014; 48
Huang (10.1016/j.compbiomed.2024.108301_b41) 2023
Thorp (10.1016/j.compbiomed.2024.108301_b38) 2023
Vale-Silva (10.1016/j.compbiomed.2024.108301_b30) 2021; 11
10.1016/j.compbiomed.2024.108301_b59
Hou (10.1016/j.compbiomed.2024.108301_b23) 2023
10.1016/j.compbiomed.2024.108301_b42
10.1016/j.compbiomed.2024.108301_b40
Li (10.1016/j.compbiomed.2024.108301_b19) 2022; 38
Wang (10.1016/j.compbiomed.2024.108301_b18) 2021; 37
Kattan (10.1016/j.compbiomed.2024.108301_b49) 2002; 20
Pan (10.1016/j.compbiomed.2024.108301_b3) 2023
Gao (10.1016/j.compbiomed.2024.108301_b61) 2022
Ma (10.1016/j.compbiomed.2024.108301_b52) 2022; 38
Wang (10.1016/j.compbiomed.2024.108301_b57) 2022; 6
10.1016/j.compbiomed.2024.108301_b46
Lu (10.1016/j.compbiomed.2024.108301_b21) 2021; 5
Tran (10.1016/j.compbiomed.2024.108301_b5) 2021; 13
10.1016/j.compbiomed.2024.108301_b44
Yao (10.1016/j.compbiomed.2024.108301_b9) 2020; 65
Chen (10.1016/j.compbiomed.2024.108301_b28) 2020; 41
Ilse (10.1016/j.compbiomed.2024.108301_b25) 2018
Deng (10.1016/j.compbiomed.2024.108301_b7) 2021; 576
Chen (10.1016/j.compbiomed.2024.108301_b22) 2022; 40
Mobadersany (10.1016/j.compbiomed.2024.108301_b29) 2018; 115
Tomczak (10.1016/j.compbiomed.2024.108301_b47) 2015; 2015
Reimand (10.1016/j.compbiomed.2024.108301_b48) 2019; 14
Wu (10.1016/j.compbiomed.2024.108301_b17) 2023; 39
Shao (10.1016/j.compbiomed.2024.108301_b27) 2021; 34
Riasatian (10.1016/j.compbiomed.2024.108301_b43) 2021; 70
Williams (10.1016/j.compbiomed.2024.108301_b1) 2023; 29
Di (10.1016/j.compbiomed.2024.108301_b10) 2022; 31
Steyaert (10.1016/j.compbiomed.2024.108301_b16) 2023; 5
Miyamoto (10.1016/j.compbiomed.2024.108301_b53) 2015; 22
Pan (10.1016/j.compbiomed.2024.108301_b11) 2022; 77
Pan (10.1016/j.compbiomed.2024.108301_b12) 2023
Matsuo (10.1016/j.compbiomed.2024.108301_b51) 2019; 220
Islam (10.1016/j.compbiomed.2024.108301_b55) 2020
Liu (10.1016/j.compbiomed.2024.108301_b14) 2020; 68
10.1016/j.compbiomed.2024.108301_b35
10.1016/j.compbiomed.2024.108301_b34
10.1016/j.compbiomed.2024.108301_b33
10.1016/j.compbiomed.2024.108301_b32
10.1016/j.compbiomed.2024.108301_b39
10.1016/j.compbiomed.2024.108301_b37
Wang (10.1016/j.compbiomed.2024.108301_b60) 2022; 202
10.1016/j.compbiomed.2024.108301_b36
References_xml – reference: Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1096–1103.
– reference: QuanLin Wu, Hang Ye, Yuntian Gu, Huishuai Zhang, Liwei Wang, Di He, Denoising masked autoencoders help robust classification, in: The Eleventh International Conference on Learning Representations, 2022.
– volume: 11
  start-page: 13505
  year: 2021
  ident: b30
  article-title: Long-term cancer survival prediction using multimodal deep learning
  publication-title: Sci. Rep.
– reference: Tianhong Li, Huiwen Chang, Shlok Mishra, Han Zhang, Dina Katabi, Dilip Krishnan, Mage: Masked generative encoder to unify representation learning and image synthesis, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 2142–2152.
– year: 2023
  ident: b38
  article-title: Chatgpt is fun, but not an author
– year: 2023
  ident: b6
  article-title: Pacs: Prediction and analysis of cancer subtypes from multi-omics data based on a multi-head attention mechanism model
– volume: 68
  start-page: 148
  year: 2020
  end-page: 160
  ident: b14
  article-title: Optimizing survival analysis of xgboost for ties to predict disease progression of breast cancer
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 627
  year: 2020
  end-page: 636
  ident: b55
  article-title: Learning and reasoning with the graph structure representation in robotic surgery
  publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part III 23
– volume: 24
  start-page: 3089
  year: 2005
  end-page: 3110
  ident: b54
  article-title: Adjusted kaplan–meier estimator and log-rank test with inverse probability of treatment weighting for survival data
  publication-title: Stat. Med.
– volume: 2015
  start-page: 68
  year: 2015
  end-page: 77
  ident: b47
  article-title: Review the cancer genome atlas (tcga): an immeasurable source of knowledge
  publication-title: Contemp. Oncol./Współczesna Onkol.
– reference: Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie, Convnext v2: Co-designing and scaling convnets with masked autoencoders, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 16133–16142.
– volume: 13
  start-page: 1
  year: 2021
  end-page: 17
  ident: b5
  article-title: Deep learning in cancer diagnosis, prognosis and treatment selection
  publication-title: Genome Med.
– volume: 5
  start-page: 555
  year: 2021
  end-page: 570
  ident: b21
  article-title: Data-efficient and weakly supervised computational pathology on whole-slide images
  publication-title: Nat. Biomed. Eng.
– volume: 42
  start-page: 679
  year: 2022
  ident: b2
  article-title: Vitamin d3 for reducing mortality from cancer and other outcomes before, during and beyond the covid-19 pandemic: A plea for harvesting low-hanging fruit
  publication-title: Cancer Commun.
– reference: Christopher Choy, JunYoung Gwak, Silvio Savarese, 4d spatio-temporal convnets: Minkowski convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 3075–3084.
– volume: 59
  start-page: 125
  year: 2015
  end-page: 133
  ident: b4
  article-title: Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values
  publication-title: Comput. Biol. Med.
– reference: Richard J. Chen, Ming Y. Lu, Wei-Hung Weng, Tiffany Y. Chen, Drew F.K. Williamson, Trevor Manz, Maha Shady, Faisal Mahmood, Multimodal co-attention transformer for survival prediction in gigapixel whole slide images, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 4015–4025.
– reference: Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, Yanfang Ye, Heterogeneous graph structure learning for graph neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 4697–4705.
– volume: 39
  start-page: btad025
  year: 2023
  ident: b17
  article-title: Camr: cross-aligned multimodal representation learning for cancer survival prediction
  publication-title: Bioinformatics
– volume: 70
  year: 2021
  ident: b43
  article-title: Fine-tuning and training of densenet for histopathology image representation using tcga diagnostic slides
  publication-title: Med. Image Anal.
– volume: 22
  start-page: 2663
  year: 2015
  end-page: 2668
  ident: b53
  article-title: Sarcopenia is a negative prognostic factor after curative resection of colorectal cancer
  publication-title: Anna. Surg. Oncol.
– volume: 41
  start-page: 757
  year: 2020
  end-page: 770
  ident: b28
  article-title: Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis
  publication-title: IEEE Trans. Med. Imaging
– volume: 20
  start-page: 791
  year: 2002
  end-page: 796
  ident: b49
  article-title: Postoperative nomogram for 12-year sarcoma-specific death
  publication-title: J. Clin. Oncol.
– year: 2023
  ident: b12
  article-title: Ldcsf: Local depth convolution-based swim framework for classifying multi-label histopathology images
– volume: 576
  start-page: 24
  year: 2021
  end-page: 36
  ident: b7
  article-title: Integrating multiple genomic imaging data for the study of lung metastasis in sarcomas using multi-dimensional constrained joint non-negative matrix factorization
  publication-title: Inform. Sci.
– volume: 31
  start-page: 1149
  year: 2022
  end-page: 1160
  ident: b10
  article-title: Big-hypergraph factorization neural network for survival prediction from whole slide image
  publication-title: IEEE Trans. Image Process.
– reference: Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, Nitesh V. Chawla, Heterogeneous graph neural network, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 793–803.
– reference: Benjamin Graham, Martin Engelcke, Laurens Van Der Maaten, 3d semantic segmentation with submanifold sparse convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9224–9232.
– volume: 37
  start-page: 2963
  year: 2021
  end-page: 2970
  ident: b18
  article-title: Gpdbn: deep bilinear network integrating both genomic data and pathological images for breast cancer prognosis prediction
  publication-title: Bioinformatics
– volume: Vol. 88
  start-page: 187
  year: 2023
  end-page: 200
  ident: b8
  article-title: Artificial intelligence-based multi-omics analysis fuels cancer precision medicine
  publication-title: Seminars in Cancer Biology
– year: 2022
  ident: b61
  article-title: Convmae: Masked convolution meets masked autoencoders
– volume: 77
  year: 2022
  ident: b11
  article-title: Noise-reducing attention cross fusion learning transformer for histological image classification of osteosarcoma
  publication-title: Biomed. Signal Process. Control
– volume: 115
  start-page: E2970
  year: 2018
  end-page: E2979
  ident: b29
  article-title: Predicting cancer outcomes from histology and genomics using convolutional networks
  publication-title: Proc. Natl. Acad. Sci.
– reference: Qiankun Liu, Zhentao Tan, Dongdong Chen, Qi Chu, Xiyang Dai, Yinpeng Chen, Mengchen Liu, Lu Yuan, Nenghai Yu, Reduce information loss in transformers for pluralistic image inpainting, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11347–11357.
– volume: 16
  start-page: 2430
  year: 2020
  ident: b13
  article-title: A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular carcinoma
  publication-title: Int. J. Biol. Sci.
– volume: 154
  year: 2023
  ident: b20
  article-title: Deep multimodal graph-based network for survival prediction from highly multiplexed images and patient variables
  publication-title: Comput. Biol. Med.
– volume: 34
  start-page: 2136
  year: 2021
  end-page: 2147
  ident: b27
  article-title: Transmil: Transformer based correlated multiple instance learning for whole slide image classification
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 574
  year: 2020
  end-page: 591
  ident: b45
  article-title: Pointcontrast: Unsupervised pre-training for 3d point cloud understanding
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16
– volume: 14
  start-page: 482
  year: 2019
  end-page: 517
  ident: b48
  article-title: Pathway enrichment analysis and visualization of omics data using g: Profiler, gsea, cytoscape and enrichmentmap
  publication-title: Nat. Protoc.
– volume: 93
  start-page: 27
  year: 2009
  end-page: 32
  ident: b58
  article-title: Ectopic gene conversions in the human genome
  publication-title: Genomics
– year: 2023
  ident: b3
  article-title: Multi-head attention mechanism learning for cancer new subtypes and treatment based on cancer multi-omics data
– start-page: 2127
  year: 2018
  end-page: 2136
  ident: b25
  article-title: Welling Attention-based deep multiple instance learning
  publication-title: International Conference on Machine Learning
– reference: Xin Lin, Changxing Ding, Jinquan Zeng, Dacheng Tao, Tao Gps-net: Graph property sensing network for scene graph generation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3746–3753.
– volume: 38
  start-page: 2587
  year: 2022
  end-page: 2594
  ident: b19
  article-title: Hfbsurv: hierarchical multimodal fusion with factorized bilinear models for cancer survival prediction
  publication-title: Bioinformatics
– volume: 40
  start-page: 865
  year: 2022
  end-page: 878
  ident: b22
  article-title: Pan-cancer integrative histology-genomic analysis via multimodal deep learning
  publication-title: Cancer Cell
– volume: 38
  start-page: 410
  year: 2022
  end-page: 418
  ident: b52
  article-title: Xgblc: an improved survival prediction model based on xgboost
  publication-title: Bioinformatics
– reference: Yutong Bai, Zeyu Wang, Junfei Xiao, Chen Wei, Huiyu Wang, Alan L. Yuille, Yuyin Zhou, Cihang Xie, Masked autoencoders enable efficient knowledge distillers, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 24256–24265.
– year: 2023
  ident: b23
  article-title: Hybrid graph convolutional network with online masked autoencoder for robust multimodal cancer survival prediction
  publication-title: IEEE Trans. Med. Imaging
– volume: 202
  year: 2022
  ident: b60
  article-title: A spatiotemporal graph neural network for session-based recommendation
  publication-title: Expert Syst. Appl.
– reference: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick, Masked autoencoders are scalable vision learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16000–16009.
– volume: 48
  start-page: 1
  year: 2014
  end-page: 7
  ident: b15
  article-title: Risk classification of cancer survival using ann with gene expression data from multiple laboratories
  publication-title: Comput. Biol. Med.
– volume: 220
  start-page: 381
  year: 2019
  end-page: e1
  ident: b51
  article-title: Survival outcome prediction in cervical cancer: Cox models vs deep-learning model
  publication-title: Am. J. Obstet. Gynecol.
– volume: 5
  start-page: 351
  year: 2023
  end-page: 362
  ident: b16
  article-title: Multimodal data fusion for cancer biomarker discovery with deep learning
  publication-title: Nat. Mach. Intell.
– volume: 6
  start-page: 45
  year: 2022
  ident: b57
  article-title: Cell graph neural networks enable the precise prediction of patient survival in gastric cancer
  publication-title: NPJ Precis. Oncol.
– volume: 35
  start-page: i446
  year: 2019
  end-page: i454
  ident: b31
  article-title: Deep learning with multimodal representation for pancancer prognosis prediction
  publication-title: Bioinformatics
– year: 2023
  ident: b41
  article-title: Contrastive masked autoencoders are stronger vision learners
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 51
  start-page: 1
  year: 2019
  end-page: 36
  ident: b50
  article-title: Machine learning for survival analysis: A survey
  publication-title: ACM Comput. Surv.
– year: 2023
  ident: b24
  article-title: Modeling dense multimodal interactions between biological pathways and histology for survival prediction
– reference: Yijun Tian, Kaiwen Dong, Chunhui Zhang, Chuxu Zhang, Nitesh V. Chawla, Heterogeneous graph masked autoencoders, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 9997–10005.
– start-page: 625
  year: 2020
  end-page: 635
  ident: b56
  article-title: Pooling regularized graph neural network for fmri biomarker analysis
  publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII 23
– volume: 29
  start-page: 3850
  year: 2023
  end-page: 3851
  ident: b1
  article-title: Aacr cancer progress report 2023: Advancing the frontiers of cancer science and medicine
  publication-title: Clin. Cancer Res.
– volume: 65
  year: 2020
  ident: b9
  article-title: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks
  publication-title: Med. Image Anal.
– ident: 10.1016/j.compbiomed.2024.108301_b46
– year: 2023
  ident: 10.1016/j.compbiomed.2024.108301_b12
– volume: 29
  start-page: 3850
  issue: 19
  year: 2023
  ident: 10.1016/j.compbiomed.2024.108301_b1
  article-title: Aacr cancer progress report 2023: Advancing the frontiers of cancer science and medicine
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-23-2591
– ident: 10.1016/j.compbiomed.2024.108301_b33
  doi: 10.1609/aaai.v37i8.26192
– ident: 10.1016/j.compbiomed.2024.108301_b62
– volume: 42
  start-page: 679
  issue: 8
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108301_b2
  article-title: Vitamin d3 for reducing mortality from cancer and other outcomes before, during and beyond the covid-19 pandemic: A plea for harvesting low-hanging fruit
  publication-title: Cancer Commun.
  doi: 10.1002/cac2.12328
– ident: 10.1016/j.compbiomed.2024.108301_b37
  doi: 10.1145/1390156.1390294
– ident: 10.1016/j.compbiomed.2024.108301_b59
  doi: 10.1109/CVPR42600.2020.00380
– year: 2023
  ident: 10.1016/j.compbiomed.2024.108301_b6
– volume: 11
  start-page: 13505
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108301_b30
  article-title: Long-term cancer survival prediction using multimodal deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92799-4
– volume: Vol. 88
  start-page: 187
  year: 2023
  ident: 10.1016/j.compbiomed.2024.108301_b8
  article-title: Artificial intelligence-based multi-omics analysis fuels cancer precision medicine
– start-page: 574
  year: 2020
  ident: 10.1016/j.compbiomed.2024.108301_b45
  article-title: Pointcontrast: Unsupervised pre-training for 3d point cloud understanding
– volume: 5
  start-page: 351
  issue: 4
  year: 2023
  ident: 10.1016/j.compbiomed.2024.108301_b16
  article-title: Multimodal data fusion for cancer biomarker discovery with deep learning
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00633-5
– ident: 10.1016/j.compbiomed.2024.108301_b36
– volume: 16
  start-page: 2430
  issue: 13
  year: 2020
  ident: 10.1016/j.compbiomed.2024.108301_b13
  article-title: A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular carcinoma
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.45050
– volume: 68
  start-page: 148
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2024.108301_b14
  article-title: Optimizing survival analysis of xgboost for ties to predict disease progression of breast cancer
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.2993278
– volume: 37
  start-page: 2963
  issue: 18
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108301_b18
  article-title: Gpdbn: deep bilinear network integrating both genomic data and pathological images for breast cancer prognosis prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab185
– ident: 10.1016/j.compbiomed.2024.108301_b32
  doi: 10.1109/CVPR.2018.00961
– volume: 59
  start-page: 125
  year: 2015
  ident: 10.1016/j.compbiomed.2024.108301_b4
  article-title: Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.02.006
– ident: 10.1016/j.compbiomed.2024.108301_b39
– year: 2023
  ident: 10.1016/j.compbiomed.2024.108301_b3
– volume: 93
  start-page: 27
  issue: 1
  year: 2009
  ident: 10.1016/j.compbiomed.2024.108301_b58
  article-title: Ectopic gene conversions in the human genome
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2008.09.007
– volume: 38
  start-page: 2587
  issue: 9
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108301_b19
  article-title: Hfbsurv: hierarchical multimodal fusion with factorized bilinear models for cancer survival prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac113
– volume: 39
  start-page: btad025
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2024.108301_b17
  article-title: Camr: cross-aligned multimodal representation learning for cancer survival prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad025
– year: 2023
  ident: 10.1016/j.compbiomed.2024.108301_b24
– start-page: 627
  year: 2020
  ident: 10.1016/j.compbiomed.2024.108301_b55
  article-title: Learning and reasoning with the graph structure representation in robotic surgery
– year: 2023
  ident: 10.1016/j.compbiomed.2024.108301_b23
  article-title: Hybrid graph convolutional network with online masked autoencoder for robust multimodal cancer survival prediction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2023.3253760
– year: 2022
  ident: 10.1016/j.compbiomed.2024.108301_b61
– volume: 6
  start-page: 45
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108301_b57
  article-title: Cell graph neural networks enable the precise prediction of patient survival in gastric cancer
  publication-title: NPJ Precis. Oncol.
  doi: 10.1038/s41698-022-00285-5
– volume: 41
  start-page: 757
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2024.108301_b28
  article-title: Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3021387
– volume: 14
  start-page: 482
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2024.108301_b48
  article-title: Pathway enrichment analysis and visualization of omics data using g: Profiler, gsea, cytoscape and enrichmentmap
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0103-9
– ident: 10.1016/j.compbiomed.2024.108301_b35
  doi: 10.1609/aaai.v35i5.16600
– start-page: 625
  year: 2020
  ident: 10.1016/j.compbiomed.2024.108301_b56
  article-title: Pooling regularized graph neural network for fmri biomarker analysis
– ident: 10.1016/j.compbiomed.2024.108301_b34
  doi: 10.1145/3292500.3330961
– volume: 31
  start-page: 1149
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108301_b10
  article-title: Big-hypergraph factorization neural network for survival prediction from whole slide image
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3139229
– ident: 10.1016/j.compbiomed.2024.108301_b44
– volume: 13
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108301_b5
  article-title: Deep learning in cancer diagnosis, prognosis and treatment selection
  publication-title: Genome Med.
  doi: 10.1186/s13073-021-00968-x
– volume: 34
  start-page: 2136
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108301_b27
  article-title: Transmil: Transformer based correlated multiple instance learning for whole slide image classification
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.compbiomed.2024.108301_b40
  doi: 10.1109/CVPR52729.2023.02323
– volume: 38
  start-page: 410
  issue: 2
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108301_b52
  article-title: Xgblc: an improved survival prediction model based on xgboost
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab675
– volume: 77
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108301_b11
  article-title: Noise-reducing attention cross fusion learning transformer for histological image classification of osteosarcoma
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103824
– volume: 22
  start-page: 2663
  year: 2015
  ident: 10.1016/j.compbiomed.2024.108301_b53
  article-title: Sarcopenia is a negative prognostic factor after curative resection of colorectal cancer
  publication-title: Anna. Surg. Oncol.
  doi: 10.1245/s10434-014-4281-6
– year: 2023
  ident: 10.1016/j.compbiomed.2024.108301_b38
– volume: 48
  start-page: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2024.108301_b15
  article-title: Risk classification of cancer survival using ann with gene expression data from multiple laboratories
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.02.006
– volume: 154
  year: 2023
  ident: 10.1016/j.compbiomed.2024.108301_b20
  article-title: Deep multimodal graph-based network for survival prediction from highly multiplexed images and patient variables
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106576
– volume: 5
  start-page: 555
  issue: 6
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108301_b21
  article-title: Data-efficient and weakly supervised computational pathology on whole-slide images
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-020-00682-w
– volume: 20
  start-page: 791
  issue: 3
  year: 2002
  ident: 10.1016/j.compbiomed.2024.108301_b49
  article-title: Postoperative nomogram for 12-year sarcoma-specific death
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2002.20.3.791
– volume: 220
  start-page: 381
  issue: 4
  year: 2019
  ident: 10.1016/j.compbiomed.2024.108301_b51
  article-title: Survival outcome prediction in cervical cancer: Cox models vs deep-learning model
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/j.ajog.2018.12.030
– volume: 65
  year: 2020
  ident: 10.1016/j.compbiomed.2024.108301_b9
  article-title: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101789
– volume: 115
  start-page: E2970
  issue: 13
  year: 2018
  ident: 10.1016/j.compbiomed.2024.108301_b29
  article-title: Predicting cancer outcomes from histology and genomics using convolutional networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1717139115
– volume: 35
  start-page: i446
  issue: 14
  year: 2019
  ident: 10.1016/j.compbiomed.2024.108301_b31
  article-title: Deep learning with multimodal representation for pancancer prognosis prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz342
– start-page: 2127
  year: 2018
  ident: 10.1016/j.compbiomed.2024.108301_b25
  article-title: Welling Attention-based deep multiple instance learning
– volume: 2015
  start-page: 68
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2024.108301_b47
  article-title: Review the cancer genome atlas (tcga): an immeasurable source of knowledge
  publication-title: Contemp. Oncol./Współczesna Onkol.
  doi: 10.5114/wo.2014.47136
– ident: 10.1016/j.compbiomed.2024.108301_b42
  doi: 10.1109/CVPR52729.2023.00213
– volume: 202
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108301_b60
  article-title: A spatiotemporal graph neural network for session-based recommendation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117114
– ident: 10.1016/j.compbiomed.2024.108301_b26
– volume: 40
  start-page: 865
  issue: 8
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108301_b22
  article-title: Pan-cancer integrative histology-genomic analysis via multimodal deep learning
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.07.004
– volume: 576
  start-page: 24
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108301_b7
  article-title: Integrating multiple genomic imaging data for the study of lung metastasis in sarcomas using multi-dimensional constrained joint non-negative matrix factorization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.06.058
– volume: 51
  start-page: 1
  issue: 6
  year: 2019
  ident: 10.1016/j.compbiomed.2024.108301_b50
  article-title: Machine learning for survival analysis: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3214306
– year: 2023
  ident: 10.1016/j.compbiomed.2024.108301_b41
  article-title: Contrastive masked autoencoders are stronger vision learners
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 24
  start-page: 3089
  issue: 20
  year: 2005
  ident: 10.1016/j.compbiomed.2024.108301_b54
  article-title: Adjusted kaplan–meier estimator and log-rank test with inverse probability of treatment weighting for survival data
  publication-title: Stat. Med.
  doi: 10.1002/sim.2174
– volume: 70
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108301_b43
  article-title: Fine-tuning and training of densenet for histopathology image representation using tcga diagnostic slides
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102032
SSID ssj0004030
Score 2.426881
Snippet Accurately predicting the survival rate of cancer patients is crucial for aiding clinicians in planning appropriate treatment, reducing cancer-related medical...
AbstractAccurately predicting the survival rate of cancer patients is crucial for aiding clinicians in planning appropriate treatment, reducing cancer-related...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108301
SubjectTerms Cancer
Coders
Convolutional mask encoder
Embedding
Graph theory
Heterogeneous graph
Humans
Internal Medicine
Missing
Modules
Multimodal
Neoplasms - diagnostic imaging
Other
Patients
Predictions
Quality of Life
Reconstruction
Robust
Robustness
Survival
Title SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482524003858
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482524003858
https://dx.doi.org/10.1016/j.compbiomed.2024.108301
https://www.ncbi.nlm.nih.gov/pubmed/38492453
https://www.proquest.com/docview/2973419012
https://www.proquest.com/docview/2958293778
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6DiEuiJ-jMCYjcZuK2jhubDhNU9FAY0ysQHeynMRBLSOpmqbajRt_N-_FTtKyTSpCXKIqjWPL3-eXZ_t7z4S8DOPAjyUgwLhgXd_AUNSSJ10-CH3DJXfJqr8cBycnYjyWp63WryoWZnkRpKm4vJSz_wo13AOwMXT2L-CuXwo34DeADleAHa4bAX82PB4ejj5-wrn-EYpdMnjUoNK1TE69n1rhdyM6d63BMBKdfwcHVBeLDPNbYpoJVCGWosMfWYxnAGRhkS8ws0A8iSpnM0LmzPfzAszO0jWvSn7gDo0oVberCZ_-3NM_dTEQwNZv82LSWGxri84n06IRD5UKhPOG11_dovcYS6-uY3ir8pdyca0KsGnUTKXBhs-EL2xsdG2w7WE_V4y_XYeYInYzm7zgFVaEMkrmalpPrX1WZieCt6OQFndIt8i2F3Ap2mT74N1w_L6JsO0xG8zkmuM0YVYpeH19Nzk6N01kSodmdI_cdTMRemAZdJ-0TPqA3P7gcHlIflZEek3XaERLGlFHI4o0oms0opZGdIVGFGhEGxpRSyPa0IhmCbU0ohWNHpHPb4ejw6OuO66jG4FTs-gmMHM3Ik762tMxSzSLfBGLyDMh9J4c-APoYj_kOmFayyjgmkeahXHMGCbL7kXsMWmnWWqeENrDZQYPnKdeaPyBBEQEGBChDRMm0UncIUHVtypyuezxSJULVYkWp6pBRSEqyqLSIf265Mzmc9mgjKzgU1W8MnxhFfBug7LBdWVN7ixGrvoq91RPXeFih7ypSzpv2Hq5G9a7W_FM1VXhOXU-zgC8DnlR_w3fE9wk1CWH4BkuYAoQBNCAHcvPuqMAP-n5nD39p6Y9I3ea8b9L2ot5YZ6TW9FyMcnne2QrGIs9N_5-Ax_uA5U
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SELECTOR%3A+Heterogeneous+graph+network+with+convolutional+masked+autoencoder+for+multimodal+robust+prediction+of+cancer+survival&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Pan%2C+Liangrui&rft.au=Peng%2C+Yijun&rft.au=Li%2C+Yan&rft.au=Wang%2C+Xiang&rft.date=2024-04-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=172&rft_id=info:doi/10.1016%2Fj.compbiomed.2024.108301&rft.externalDocID=S0010482524003858
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif