4-tangrams are 4-avoidable

A tangram is a word in which every letter occurs an even number of times. Thus it can be cut into parts that can be arranged into two identical words. The \emph{cut number} of a tangram is the minimum number of required cuts in this process. Tangrams with cut number one corresponds to squares. For $...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Mathematics and Theoretical Computer Science Ročník 27:3; číslo Combinatorics; s. 1 - 6
Hlavní autoři: Ochem, Pascal, Pierron, Théo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Nancy DMTCS 01.10.2025
Discrete Mathematics & Theoretical Computer Science
Témata:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A tangram is a word in which every letter occurs an even number of times. Thus it can be cut into parts that can be arranged into two identical words. The \emph{cut number} of a tangram is the minimum number of required cuts in this process. Tangrams with cut number one corresponds to squares. For $k\ge1$, let $t(k)$ denote the minimum size of an alphabet over which an infinite word avoids tangrams with cut number at most~$k$. The existence of infinite ternary square-free words shows that $t(1)=t(2)=3$. We show that $t(3)=t(4)=4$, answering a question from Dębski, Grytczuk, Pawlik, Przybyło, and Śleszyńska-Nowak.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.15310