A Classification-Based Surrogate-Assisted Evolutionary Algorithm for Expensive Many-Objective Optimization

Surrogate-assisted evolutionary algorithms (SAEAs) have been developed mainly for solving expensive optimization problems where only a small number of real fitness evaluations are allowed. Most existing SAEAs are designed for solving low-dimensional single or multiobjective optimization problems, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 23; H. 1; S. 74 - 88
Hauptverfasser: Pan, Linqiang, He, Cheng, Tian, Ye, Wang, Handing, Zhang, Xingyi, Jin, Yaochu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!