In-memory database acceleration on FPGAs: a survey

While FPGAs have seen prior use in database systems, in recent years interest in using FPGA to accelerate databases has declined in both industry and academia for the following three reasons. First, specifically for in-memory databases, FPGAs integrated with conventional I/O provide insufficient ban...

Full description

Saved in:
Bibliographic Details
Published in:The VLDB journal Vol. 29; no. 1; pp. 33 - 59
Main Authors: Fang, Jian, Mulder, Yvo T. B., Hidders, Jan, Lee, Jinho, Hofstee, H. Peter
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2020
Springer Nature B.V
Subjects:
ISSN:1066-8888, 0949-877X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract While FPGAs have seen prior use in database systems, in recent years interest in using FPGA to accelerate databases has declined in both industry and academia for the following three reasons. First, specifically for in-memory databases, FPGAs integrated with conventional I/O provide insufficient bandwidth, limiting performance. Second, GPUs, which can also provide high throughput, and are easier to program, have emerged as a strong accelerator alternative. Third, programming FPGAs required developers to have full-stack skills, from high-level algorithm design to low-level circuit implementations. The good news is that these challenges are being addressed. New interface technologies connect FPGAs into the system at main-memory bandwidth and the latest FPGAs provide local memory competitive in capacity and bandwidth with GPUs. Ease of programming is improving through support of shared coherent virtual memory between the host and the accelerator, support for higher-level languages, and domain-specific tools to generate FPGA designs automatically. Therefore, this paper surveys using FPGAs to accelerate in-memory database systems targeting designs that can operate at the speed of main memory.
AbstractList While FPGAs have seen prior use in database systems, in recent years interest in using FPGA to accelerate databases has declined in both industry and academia for the following three reasons. First, specifically for in-memory databases, FPGAs integrated with conventional I/O provide insufficient bandwidth, limiting performance. Second, GPUs, which can also provide high throughput, and are easier to program, have emerged as a strong accelerator alternative. Third, programming FPGAs required developers to have full-stack skills, from high-level algorithm design to low-level circuit implementations. The good news is that these challenges are being addressed. New interface technologies connect FPGAs into the system at main-memory bandwidth and the latest FPGAs provide local memory competitive in capacity and bandwidth with GPUs. Ease of programming is improving through support of shared coherent virtual memory between the host and the accelerator, support for higher-level languages, and domain-specific tools to generate FPGA designs automatically. Therefore, this paper surveys using FPGAs to accelerate in-memory database systems targeting designs that can operate at the speed of main memory.
Author Lee, Jinho
Hofstee, H. Peter
Mulder, Yvo T. B.
Hidders, Jan
Fang, Jian
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0002-1077-1859
  surname: Fang
  fullname: Fang, Jian
  email: j.fang-1@tudelft.nl
  organization: Delft University of Technology
– sequence: 2
  givenname: Yvo T. B.
  surname: Mulder
  fullname: Mulder, Yvo T. B.
  organization: IBM Research and Development
– sequence: 3
  givenname: Jan
  surname: Hidders
  fullname: Hidders, Jan
  organization: Vrije Universiteit Brussel
– sequence: 4
  givenname: Jinho
  surname: Lee
  fullname: Lee, Jinho
  organization: Yonsei University
– sequence: 5
  givenname: H. Peter
  surname: Hofstee
  fullname: Hofstee, H. Peter
  organization: Delft University of Technology, IBM Research
BookMark eNp9kEFLAzEQhYNUsK3-AU8LnqOzSXaTeCvF1kJBDwreQjadlS3tbk22lv33jV1B8NBhmLm8b-bxRmRQNzUScpvCfQogH0IcUlFINQXIVEoPF2QIWmiqpPwYkGEKeU5VrCsyCmENAIyxbEjYoqZb3Da-S1a2tYUNmFjncIPetlVTJ7Fnr_NJeExsEvb-G7trclnaTcCb3z0m77Ont-kzXb7MF9PJkjrBdEtXhcS8cE5oBUpIwUErRCFBlqoEYZ3kmGu00TiToHNlZeYs02VW6EKxFR-Tu_7uzjdfewytWTd7X8eXhnGhWM55vDomqlc534TgsTSuak_WW2-rjUnB_CRk-oRMTMicEjKHiLJ_6M5XW-u78xDvoRDF9Sf6P1dnqCNuz3my
CitedBy_id crossref_primary_10_1109_TC_2025_3569163
crossref_primary_10_1016_j_future_2024_04_059
crossref_primary_10_1109_TNS_2023_3235904
crossref_primary_10_1109_TC_2021_3068715
crossref_primary_10_1145_3508024
crossref_primary_10_1145_3749189
crossref_primary_10_1016_j_mattod_2022_08_017
crossref_primary_10_3389_fhpcp_2025_1572844
crossref_primary_10_1007_s13204_021_01985_3
crossref_primary_10_3390_network3010001
crossref_primary_10_1145_3485126
crossref_primary_10_1145_3706113
crossref_primary_10_1109_ACCESS_2021_3098004
crossref_primary_10_1364_JOCN_448626
crossref_primary_10_3390_s24237709
crossref_primary_10_1007_s42979_024_03381_4
crossref_primary_10_1109_MCAS_2021_3071608
crossref_primary_10_3390_mi13112029
crossref_primary_10_1016_j_parco_2024_103064
crossref_primary_10_1016_j_sysarc_2022_102734
crossref_primary_10_1145_3674843
crossref_primary_10_1007_s00778_020_00642_5
crossref_primary_10_3390_electronics13112125
crossref_primary_10_1109_TKDE_2024_3386827
crossref_primary_10_1145_3639291
crossref_primary_10_1109_ACCESS_2023_3261802
crossref_primary_10_1145_3568990
crossref_primary_10_1007_s11265_020_01547_w
crossref_primary_10_1109_ACCESS_2024_3452104
Cites_doi 10.14778/1952376.1952381
10.1109/MICRO.2016.7783710
10.14778/1687553.1687564
10.1145/3035918.3035954
10.1145/2370816.2370874
10.1145/1998582.1998590
10.1007/s00778-011-0232-z
10.1145/2463209.2488795
10.1145/1989323.1989328
10.1145/2508148.2485945
10.1109/FCCM.2018.00038
10.1109/TVLSI.2008.2003512
10.1145/2536800
10.14778/2336664.2336678
10.1109/MCSE.2010.93
10.1145/2664666.2664670
10.1109/FPL.2013.6645550
10.1007/978-3-030-10549-5_15
10.1145/1807167.1807307
10.1145/1534916.1534919
10.14778/1687627.1687654
10.1109/FCCM.2019.00076
10.1145/1562764.1562783
10.17487/rfc1952
10.1145/2847263.2847305
10.1109/TCAD.2011.2110592
10.1145/2499369.2465557
10.1109/TKDE.2014.2313874
10.1145/3035918.3035946
10.1007/978-3-319-57972-6_10
10.1145/1950413.1950423
10.1145/1950413.1950427
10.1109/ICSAMOS.2009.5289237
10.1007/978-3-319-56111-0_2
10.1145/2540708.2540748
10.1145/2554688.2554787
10.1109/ASAP.2017.7995280
10.1007/978-3-319-98521-3_7
10.1145/2934583.2953984
10.1109/TIT.1978.1055934
10.1145/3003665.3003669
10.1145/1468075.1468121
10.14778/2732219.2732227
10.1109/FCCM.2013.17
10.1007/978-3-319-13960-9_1
10.1109/FPL.2012.6339272
10.1109/FPL.2012.6339221
10.1145/3035918.3058746
10.14778/3137765.3137776
10.1109/MM.2013.107
10.1109/HPCS.2018.00030
10.1109/MC.1984.1659158
10.14778/2536206.2536210
10.1109/FPL.2014.6927484
10.1007/978-3-030-02465-9_25
10.1109/FPL.2018.00030
10.2200/S00514ED1V01Y201306DTM035
10.1109/TCAD.2015.2513673
10.1109/TIT.1977.1055714
10.1109/CODESISSS.2018.8525953
10.1007/978-3-642-19475-7_26
10.1007/978-3-662-45761-0_1
10.1007/978-3-030-17227-5_3
10.1145/2678373.2665678
10.1147/rd.494.0589
10.14778/1687627.1687730
10.1145/2435264.2435268
10.1109/FPL.2015.7293941
10.1145/1739041.1739137
10.1145/2897937.2905012
10.1145/1620585.1620588
10.14778/3236187.3236188
10.1109/ICDE.2012.39
10.1145/3174243.3174987
10.1145/1559845.1559965
10.14778/2536360.2536370
10.1109/MCSE.2010.69
10.1109/ICPP.2016.35
10.1109/FCCM.2018.00023
10.14778/2732967.2732972
10.1145/322344.322346
10.14778/2536274.2536319
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00778-019-00581-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0949-877X
EndPage 59
ExternalDocumentID 10_1007_s00778_019_00581_w
GrantInformation_xml – fundername: Delft University of Technology
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
123
1N0
1SB
2.D
203
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKMM
AALFJ
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTV
AAYFX
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADL
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEBYY
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AENSD
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWIH
AFWTZ
AFWXC
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
CCLIF
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GUFHI
GXS
H13
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I07
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LHSKQ
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
W7O
WK8
YLTOR
YZZ
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEFXT
AEJOY
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AKRVB
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
JQ2
ID FETCH-LOGICAL-c429t-db7e6bcc498084743098ee4707f8f04ac73e69ea077270968a75ca29f5b9b82d3
IEDL.DBID RSV
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492650700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1066-8888
IngestDate Thu Sep 25 00:47:20 EDT 2025
Tue Nov 18 22:12:05 EST 2025
Sat Nov 29 03:17:17 EST 2025
Fri Feb 21 02:37:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords High bandwidth
Survey
Acceleration
FPGA
In-memory database
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-db7e6bcc498084743098ee4707f8f04ac73e69ea077270968a75ca29f5b9b82d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1077-1859
OpenAccessLink https://link.springer.com/10.1007/s00778-019-00581-w
PQID 2348263374
PQPubID 2043708
PageCount 27
ParticipantIDs proquest_journals_2348263374
crossref_citationtrail_10_1007_s00778_019_00581_w
crossref_primary_10_1007_s00778_019_00581_w
springer_journals_10_1007_s00778_019_00581_w
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: New York
PublicationSubtitle The International Journal on Very Large Data Bases
PublicationTitle The VLDB journal
PublicationTitleAbbrev The VLDB Journal
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ZivJLempelACompression of individual sequences via variable-rate codingIEEE Trans. Inf. Theory197824553053650746510.1109/TIT.1978.1055934
Czajkowski, T.S., Aydonat, U., Denisenko, D., Freeman, J., Kinsner, M., Neto, D., Wong, J., Yiannacouras, P., Singh, D.P.: From OpenCL to high-performance hardware on FPGAs. In: 22nd International Conference on Field Programmable Logic and Applications (FPL), pp. 531–534. IEEE (2012)
Cong, J., Huang, M., Pan, P., Wu, D., Zhang, P.: Software infrastructure for enabling FPGA-based accelerations in data centers. In: Proceedings of the 2016 International Symposium on Low Power Electronics and Design, pp. 154–155. ACM (2016)
Nikhil, R.: Bluespec System Verilog: efficient, correct RTL from high level specifications. In: Proceedings. Second ACM and IEEE International Conference on Formal Methods and Models for Co-design, 2004. MEMOCODE’04., pp. 69–70. IEEE (2004)
Caulfield, A.M., Chung, E.S., Putnam, A., Angepat, H., Fowers, J., Haselman, M., Heil, S., Humphrey, M., Kaur, P., Kim, J.Y., et al.: A cloud-scale acceleration architecture. In: The 49th Annual IEEE/ACM International Symposium on Microarchitecture, p. 7. IEEE Press (2016)
Qiao, Y.: An FPGA-based snappy decompressor-filter. Master’s Thesis, Delft University of Technology (2018)
Benton, B.: CCIX, Gen-Z, OpenCAPI: overview and comparison. https://www.openfabrics.org/images/eventpresos/2017presentations/213_CCIXGen-Z_BBenton.pdf (2017). Accessed 3 June 2018
Liu, H.Y., Carloni, L.P.: On learning-based methods for design-space exploration with high-level synthesis. In: Proceedings of the 50th Annual Design Automation Conference, p. 50. ACM (2013)
MuellerRTeubnerJAlonsoGData processing on FPGAsProc. VLDB Endow.20092191092110.14778/1687627.1687730
PCI-SIG: Specifications PCI-SIG. https://pcisig.com/specifications. Accessed 01 July 2019
Franklin, M., Chamberlain, R., Henrichs, M., Shands, B., White, J.: An architecture for fast processing of large unstructured data sets. In: IEEE International Conference on Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings, pp. 280–287. IEEE (2004)
BalkesenÇTeubnerJAlonsoGÖzsuMTMain-memory hash joins on modern processor architecturesIEEE Trans. Knowl. Data Eng.20152771754176610.1109/TKDE.2014.2313874
Marcelino, R., Neto, H.C., Cardoso, J.M.: Unbalanced FIFO sorting for FPGA-based systems. In: 16th IEEE International Conference on Electronics, Circuits, and Systems, 2009. ICECS 2009, pp. 431–434. IEEE (2009)
Papaphilippou, P., Luk, W.: Accelerating database systems using FPGAs: a survey. In: 2018 28th International Conference on Field Programmable Logic and Applications (FPL), pp. 125–1255. IEEE (2018)
Feist, T.: Vivado design suite. White Paper, vol. 5 (2012)
Halstead, R.J., Sukhwani, B., Min, H., Thoennes, M., Dube, P., Asaad, S., Iyer, B.: Accelerating join operation for relational databases with FPGAs. In: 2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines, pp. 17–20. IEEE (2013)
OpenPOWER: SNAP framework hardware and software. https://github.com/open-power/snap/. Accessed 03 June 2018
Kinetica: Kinetica. http://www.kinetica.com/. Accessed 3 June 2018
Bartík, M., Ubik, S., Kubalik, P.: LZ4 compression algorithm on FPGA. In: IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 2015, pp. 179–182. IEEE (2015)
Balkesen, C., Teubner, J., Alonso, G., Özsu, M.T.: Main-memory hash joins on multi-core CPUs: tuning to the underlying hardware. In: IEEE 29th International Conference on Data Engineering (ICDE), 2013, pp. 362–373. IEEE (2013)
StoneJEGoharaDShiGOpenCL: a parallel programming standard for heterogeneous computing systemsComput. Sci. Eng.2010121–3667310.1109/MCSE.2010.69
TeubnerJWoodsLNieCXLynx-an FPGA-based XML filter for hybrid XQuery processingACM Trans. Database Syst.201338423314140110.1145/2536800
AlbutiuMCKemperANeumannTMassively parallel sort-merge joins in main memory multi-core database systemsProc. VLDB Endow.20125101064107510.14778/2336664.2336678
Dennl, C., Ziener, D., Teich, J.: Acceleration of SQL restrictions and aggregations through FPGA-based dynamic partial reconfiguration. In: IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2013, pp. 25–28. IEEE (2013)
Lang, H., Leis, V., Albutiu, M.C., Neumann, T., Kemper, A.: Massively parallel NUMA-aware hash joins. In: In Memory Data Management and Analysis, pp. 3–14. Springer (2015)
Peltenburg, J., van Straten, J., Brobbel, M., Hofstee, H.P., Al-Ars, Z.: Supporting columnar in-memory formats on FPGA: the hardware design of fletcher for Apache Arrow. In: International Symposium on Applied Reconfigurable Computing, pp. 32–47. Springer (2019)
Zhang, C., Chen, R., Prasanna, V.: High throughput large scale sorting on a CPU-FPGA heterogeneous platform. In: Parallel and Distributed Processing Symposium Workshops, 2016 IEEE International, pp. 148–155. IEEE (2016)
Chung, E.S., Davis, J.D., Lee, J.: Linqits: big data on little clients. In: ACM SIGARCH Computer Architecture News, vol. 41, pp. 261–272. ACM (2013)
WangWZhangMChenGJagadishHOoiBCTanKLDatabase meets deep learning: challenges and opportunitiesACM SIGMOD Rec.2016452172210.1145/3003665.3003669
KimCKaldeweyTLeeVWSedlarENguyenADSatishNChhuganiJDi BlasADubeyPSort vs. hash revisited: fast join implementation on modern multi-core CPUsProc. VLDB Endow.2009221378138910.14778/1687553.1687564
Mueller, R., Teubner, J.: FPGA: what’s in it for a database? In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, pp. 999–1004. ACM (2009)
SalomonDData Compression: The Complete Reference2004BerlinSpringer1049.68061
Mulder, Y.: Feeding high-bandwidth streaming-based FPGA accelerators. Master’s Thesis, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands (2018)
ZivJLempelAA universal algorithm for sequential data compressionIEEE Trans. Inf. Theory197723333734353021510.1109/TIT.1977.1055714
Cong, J., Fang, Z., Lo, M., Wang, H., Xu, J., Zhang, S.: Understanding performance differences of FPGAs and GPUs. In: 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 93–96. IEEE (2018)
Sadoghi, M., Javed, R., Tarafdar, N., Singh, H., Palaniappan, R., Jacobsen, H.A.: Multi-query stream processing on FPGAs. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1229–1232. IEEE (2012)
Wissolik, M., Zacher, D., Torza, A., Da, B.: Virtex UltraScale+ HBM FPGA: a revolutionary increase in memory performance. Xilinx Whitepaper (2017)
Fang, J., Lee, J., Hofstee, H.P., Hidders, J.: Analyzing in-memory hash joins: granularity matters. In: Proceedings the 8th International Workshop on Accelerating Analytics and Data Management Systems Using Modern Processor and Storage Architectures, pp. 18–25 (2017)
Wu, L., Barker, R.J., Kim, M.A., Ross, K.A.: Hardware-accelerated range partitioning. Columbia University Computer Science Technical Reports (2012)
MuellerRTeubnerJAlonsoGSorting networks on FPGAsVLDB J.201221112310.1007/s00778-011-0232-z
WoodsLIstvánZAlonsoGIbex: an intelligent storage engine with support for advanced SQL offloadingProc. VLDB Endow.201471196397410.14778/2732967.2732972
Thompto, B.: POWER9: processor for the cognitive era. In: Hot Chips 28 Symposium (HCS), 2016 IEEE, pp. 1–19. IEEE (2016)
Srivastava, A., Chen, R., Prasanna, V.K., Chelmis, C.: A hybrid design for high performance large-scale sorting on FPGA. In: International Conference on ReConFigurable Computing and FPGAs (ReConFig), 2015, pp. 1–6. IEEE (2015)
Intel, F.: SDK for OpenCL. Programming guide. UG-OCL002 31 (2016)
MahajanDKimJKSacksJArdalanAKumarAEsmaeilzadehHIn-RDBMS hardware acceleration of advanced analyticsProc. VLDB Endow.201811111317133110.14778/3236187.3236188
Wirbel, L.: Xilinx SDAccel: a unified development environment for tomorrow’s data center. Technical Report, The Linley Group Inc. (2014)
Lei, J., Chen, Y., Li, Y., Cong, J.: A high-throughput architecture for lossless decompression on FPGA designed using HLS. In: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 277–277. ACM (2016)
Saitoh, M., Elsayed, E.A., Van Chu, T., Mashimo, S., Kise, K.: A high-performance and cost-effective hardware merge sorter without feedback datapath. In: 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 197–204. IEEE (2018)
Halstead, R.J., Absalyamov, I., Najjar, W.A., Tsotras, V.J.: FPGA-based Multithreading for In-Memory Hash Joins. In: CIDR (2015)
Stuecheli, J.: A new standard for high performance memory, acceleration and networks. http://opencapi.org/2017/04/opencapi-new-standard-high-performance-memory-acceleration-networks/. Accessed 3 June 2018
Apache: Apache Arrow. https://arrow.apache.org/. Accessed 01 Mar 2019
Duhem, F., Muller, F., Lorenzini, P.: Farm: fast reconfiguration manager for reducing reconfiguration time overhead on fpga. In: International Symposium on Applied Reconfigurable Computing, pp. 253–260. Springer (2011)
Casper, J., Olukotun, K.: Hardware acceleration of database operations. In: Proceedings of the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 151–160. ACM (2014)
Gopal, V., Gulley, S.M., Guilford, J.D.: Technologies for efficient lz77-based data decompression (2017). US Patent App. 15/374,462
Abdelfattah, M.S., Hagiescu, A., Singh, D.: Gzip on a chip: high performance lossless data compression on fpgas using opencl. In: Proceedings of the International Workshop on OpenCL 2013 & 2014, p. 4. ACM (2014)
AsanovicKBodikRDemmelJKeavenyTKeutzerKKubiatowiczJMorganNPattersonDSenKWawrzynekJA view of the parallel computing landscapeCommun. ACM20095210566710.1145/1562764.1562783
SukhwaniBMinHThoennesMDubePBrezzoBAsaadSDillenbergerDEDatabase analytics: a reconfigurable-computing approachIEEE Micro2014341192910.1109/MM.2013.107
Wenzel, L., Schmid, R., Martin, B., Plauth, M., Eberhardt, F., Polze, A.: Getting st
D Koch (581_CR68) 2009; 2
581_CR50
581_CR54
JA Kahle (581_CR59) 2005; 49
581_CR47
581_CR46
581_CR45
581_CR44
581_CR49
581_CR48
S Zhang (581_CR147) 2013; 6
J Lee (581_CR72) 2017; 10
Y Yuan (581_CR143) 2013; 6
R Mueller (581_CR85) 2009; 2
581_CR43
581_CR42
581_CR41
LH Crockett (581_CR27) 2014
581_CR40
581_CR36
581_CR35
581_CR34
A Putnam (581_CR103) 2014; 42
581_CR33
581_CR39
581_CR38
581_CR37
J Teubner (581_CR128) 2013; 38
B Sukhwani (581_CR124) 2014; 34
581_CR32
581_CR31
581_CR30
B He (581_CR51) 2009; 34
581_CR25
581_CR24
581_CR23
581_CR22
581_CR29
581_CR28
JA Storer (581_CR122) 1982; 29
581_CR144
581_CR145
K Asanovic (581_CR7) 2009; 52
581_CR146
J Teubner (581_CR127) 2013; 5
581_CR148
581_CR21
581_CR20
TC Scofield (581_CR106) 2010; 12
MC Albutiu (581_CR3) 2012; 5
581_CR14
581_CR13
581_CR12
581_CR11
581_CR99
581_CR18
581_CR17
581_CR16
581_CR15
L Woods (581_CR139) 2014; 7
581_CR19
581_CR140
581_CR141
581_CR142
581_CR133
Cagri Balkesen (581_CR8) 2013; 7
581_CR134
581_CR90
581_CR136
B He (581_CR52) 2011; 4
581_CR137
581_CR138
581_CR94
581_CR93
581_CR92
C Kim (581_CR64) 2009; 2
581_CR98
581_CR97
581_CR96
581_CR95
581_CR89
581_CR88
Ç Balkesen (581_CR10) 2015; 27
581_CR130
581_CR131
581_CR123
581_CR125
581_CR126
581_CR83
581_CR129
581_CR82
581_CR81
581_CR80
R Mueller (581_CR87) 2012; 21
581_CR86
D Salomon (581_CR111) 2004
581_CR79
581_CR78
R Mueller (581_CR84) 2009; 2
581_CR77
J Ziv (581_CR149) 1977; 23
581_CR120
581_CR110
581_CR9
581_CR112
581_CR113
581_CR114
581_CR115
581_CR116
581_CR117
581_CR118
581_CR1
581_CR71
581_CR119
581_CR2
581_CR70
W Wang (581_CR132) 2016; 45
581_CR4
581_CR5
581_CR75
581_CR6
581_CR73
581_CR69
581_CR67
581_CR66
TA Welch (581_CR135) 1984; 17
581_CR100
581_CR101
581_CR102
581_CR104
581_CR105
M Heimel (581_CR53) 2013; 6
581_CR61
581_CR107
581_CR60
581_CR108
581_CR109
MB Lin (581_CR74) 2009; 17
581_CR65
581_CR63
D Mahajan (581_CR76) 2018; 11
581_CR62
581_CR58
581_CR57
R Nane (581_CR91) 2016; 35
581_CR56
581_CR55
J Cong (581_CR26) 2011; 30
J Ziv (581_CR150) 1978; 24
JE Stone (581_CR121) 2010; 12
References_xml – reference: BalkesenCagriAlonsoGustavoTeubnerJensÖzsuM. TamerMulti-core, main-memory joinsProceedings of the VLDB Endowment201371859610.14778/2732219.2732227
– reference: HeBLuMYangKFangRGovindarajuNKLuoQSanderPVRelational query coprocessing on graphics processorsACM Trans. Database Syst.20093442110.1145/1620585.1620588
– reference: Song, W., Koch, D., Luján, M., Garside, J.: Parallel hardware merge sorter. In: IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2016, pp. 95–102. IEEE (2016)
– reference: Chen, R., Prasanna, V.K.: Accelerating equi-join on a CPU-FPGA heterogeneous platform. In: 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2016 IEEE, pp. 212–219. IEEE (2016)
– reference: Zhang, C., Chen, R., Prasanna, V.: High throughput large scale sorting on a CPU-FPGA heterogeneous platform. In: Parallel and Distributed Processing Symposium Workshops, 2016 IEEE International, pp. 148–155. IEEE (2016)
– reference: Abdelfattah, M.S., Hagiescu, A., Singh, D.: Gzip on a chip: high performance lossless data compression on fpgas using opencl. In: Proceedings of the International Workshop on OpenCL 2013 & 2014, p. 4. ACM (2014)
– reference: Gupta, P.: Accelerating datacenter workloads. In: 26th International Conference on Field Programmable Logic and Applications (FPL) (2016)
– reference: Sukhwani, B., Thoennes, M., Min, H., Dube, P., Brezzo, B., Asaad, S., Dillenberger, D.: Large payload streaming database sort and projection on FPGAs. In: 25th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), 2013, pp. 25–32. IEEE (2013)
– reference: Zacharopoulos, G., Barbon, A., Ansaloni, G., Pozzi, L.: Machine learning approach for loop unrolling factor prediction in high level synthesis. In: 2018 International Conference on High Performance Computing & Simulation (HPCS), pp. 91–97. IEEE (2018)
– reference: Cong, J., Huang, M., Pan, P., Wu, D., Zhang, P.: Software infrastructure for enabling FPGA-based accelerations in data centers. In: Proceedings of the 2016 International Symposium on Low Power Electronics and Design, pp. 154–155. ACM (2016)
– reference: Mahony, A.O., Tringale, A., Duquette, J.J., O’carroll, P.: Reduction of execution stalls of LZ4 decompression via parallelization. US Patent 9,973,210 (2018)
– reference: Sommer, L., Korinth, J., Koch, A.: OpenMP device offloading to FPGA accelerators. In: 2017 IEEE 28th International Conference on Application-specific Systems, Architectures and Processors (ASAP), pp. 201–205. IEEE (2017)
– reference: Salami, B., Arcas-Abella, O., Sonmez, N., Unsal, O., Kestelman, A.C.: Accelerating hash-based query processing operations on FPGAs by a hash table caching technique. In: Latin American High Performance Computing Conference, pp. 131–145. Springer (2016)
– reference: Koch, D., Torresen, J.: FPGASort: a high performance sorting architecture exploiting run-time reconfiguration on FPGAs for large problem sorting. In: Proceedings of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pp. 45–54. ACM (2011)
– reference: SalomonDData Compression: The Complete Reference2004BerlinSpringer1049.68061
– reference: HeBYuJXHigh-throughput transaction executions on graphics processorsProc. VLDB Endow.20114531432510.14778/1952376.1952381
– reference: Nikhil, R.: Bluespec System Verilog: efficient, correct RTL from high level specifications. In: Proceedings. Second ACM and IEEE International Conference on Formal Methods and Models for Co-design, 2004. MEMOCODE’04., pp. 69–70. IEEE (2004)
– reference: HeimelMSaeckerMPirkHManegoldSMarklVHardware-oblivious parallelism for in-memory column-storesProc. VLDB Endow.20136970972010.14778/2536360.2536370
– reference: Stephenson, M., Amarasinghe, S.: Predicting unroll factors using supervised classification. In: Proceedings of the International Symposium on Code Generation and Optimization, pp. 123–134. IEEE Computer Society (2005)
– reference: StoneJEGoharaDShiGOpenCL: a parallel programming standard for heterogeneous computing systemsComput. Sci. Eng.2010121–3667310.1109/MCSE.2010.69
– reference: Halstead, R.J., Sukhwani, B., Min, H., Thoennes, M., Dube, P., Asaad, S., Iyer, B.: Accelerating join operation for relational databases with FPGAs. In: 2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines, pp. 17–20. IEEE (2013)
– reference: Arcas-Abella, O., Ndu, G., Sonmez, N., Ghasempour, M., Armejach, A., Navaridas, J., Song, W., Mawer, J., Cristal, A., Luján, M.: An empirical evaluation of high-level synthesis languages and tools for database acceleration. In: 2014 24th International Conference on Field Programmable Logic and Applications (FPL), pp. 1–8. IEEE (2014)
– reference: Kruger, F.: CPU bandwidth: the worrisome 2020 trend. https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/ (March 23, 2016). Accessed 03 May 2017
– reference: IBM: IBM power advanced compute (AC) AC922 server. https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=POD03143USEN&. Accessed 03 Sept 2018
– reference: Katz, P.W.: String searcher, and compressor using same. US Patent 5,051,745 (1991)
– reference: Cabrera, D., Martorell, X., Gaydadjiev, G., Ayguade, E., Jiménez-González, D.: OpenMP extensions for FPGA accelerators. In: 2009 International Symposium on Systems, Architectures, Modeling, and Simulation, pp. 17–24. IEEE (2009)
– reference: LeeJKimHYooSChoiKHofsteeHPNamGJNutterMRJamsekDExtraV: boosting graph processing near storage with a coherent acceleratorProc. VLDB Endow.201710121706171710.14778/3137765.3137776
– reference: Salami, B., Arcas-Abella, O., Sonmez, N.: HATCH: hash table caching in hardware for efficient relational join on FPGA. In: IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2015, pp. 163–163. IEEE (2015)
– reference: Kara, K., Giceva, J., Alonso, G.: FPGA-based data partitioning. In: Proceedings of the 2017 ACM International Conference on Management of Data, pp. 433–445. ACM (2017)
– reference: Mueller, R., Teubner, J.: FPGA: what’s in it for a database? In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, pp. 999–1004. ACM (2009)
– reference: Caulfield, A.M., Chung, E.S., Putnam, A., Angepat, H., Fowers, J., Haselman, M., Heil, S., Humphrey, M., Kaur, P., Kim, J.Y., et al.: A cloud-scale acceleration architecture. In: The 49th Annual IEEE/ACM International Symposium on Microarchitecture, p. 7. IEEE Press (2016)
– reference: Dennl, C., Ziener, D., Teich, J.: Acceleration of SQL restrictions and aggregations through FPGA-based dynamic partial reconfiguration. In: IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2013, pp. 25–28. IEEE (2013)
– reference: LinMBChangYYA New Architecture of a Two-Stage Lossless Data Compression and Decompression AlgorithmIEEE Trans. VLSI Syst.20091791297130310.1109/TVLSI.2008.2003512
– reference: Wirbel, L.: Xilinx SDAccel: a unified development environment for tomorrow’s data center. Technical Report, The Linley Group Inc. (2014)
– reference: TeubnerJWoodsLNieCXLynx-an FPGA-based XML filter for hybrid XQuery processingACM Trans. Database Syst.201338423314140110.1145/2536800
– reference: Mashimo, S., Van Chu, T., Kise, K.: High-performance hardware merge sorter. In: IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2017, pp. 1–8. IEEE (2017)
– reference: PutnamACaulfieldAMChungESChiouDConstantinidesKDemmeJEsmaeilzadehHFowersJGopalGPGrayJA reconfigurable fabric for accelerating large-scale datacenter servicesACM SIGARCH Comput. Archit. News2014423132410.1145/2678373.2665678
– reference: Balkesen, C., Teubner, J., Alonso, G., Özsu, M.T.: Main-memory hash joins on multi-core CPUs: tuning to the underlying hardware. In: IEEE 29th International Conference on Data Engineering (ICDE), 2013, pp. 362–373. IEEE (2013)
– reference: Kim, J., Kim, Y.: HBM: Memory Solution for Bandwidth-Hungry Processors. https://doc.xdevs.com/doc/Memory/HBM/Hynix/HC26.11.310-HBM-Bandwidth-Kim-Hynix-Hot%20Chips%20HBM%202014%20v7.pdf (2014). Accessed 29 Aug 2018
– reference: Nyberg, C., Shah, M., Govindaraju, N.: Sort benchmark home page. http://sortbenchmark.org/. Accessed 03 Aug 2018
– reference: Mulder, Y.: Feeding high-bandwidth streaming-based FPGA accelerators. Master’s Thesis, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands (2018)
– reference: Breß, S., Heimel, M., Siegmund, N., Bellatreche, L., Saake, G.: GPU-accelerated database systems: survey and open challenges. In: Transactions on Large-Scale Data-and Knowledge-Centered Systems XV, pp. 1–35. Springer (2014)
– reference: Greenberg, M.: LPDDR3 and LPDDR4: How Low-Power DRAM Can Be Used in High-Bandwidth Applications. https://www.jedec.org/sites/default/files/M_Greenberg_Mobile%20Forum_May_%202013_Final.pdf (2013). Accessed 17 Oct 2017
– reference: Mostak, T.: An overview of MapD (massively parallel database). White Paper, Massachusetts Institute of Technology (2013)
– reference: CongJLiuBNeuendorfferSNogueraJVissersKZhangZHigh-level synthesis for FPGAs: from prototyping to deploymentIEEE Trans. Comput. Aided Des. Integr. Circuits Syst.201130447349110.1109/TCAD.2011.2110592
– reference: Google: Snappy. https://github.com/google/snappy/. Accessed 03 June 2018
– reference: Liu, H.Y., Carloni, L.P.: On learning-based methods for design-space exploration with high-level synthesis. In: Proceedings of the 50th Annual Design Automation Conference, p. 50. ACM (2013)
– reference: BalkesenÇTeubnerJAlonsoGÖzsuMTMain-memory hash joins on modern processor architecturesIEEE Trans. Knowl. Data Eng.20152771754176610.1109/TKDE.2014.2313874
– reference: TeubnerJWoodsLData processing on FPGAsSynth. Lect. Data Manag.201352111810.2200/S00514ED1V01Y201306DTM035
– reference: Gopal, V., Guilford, J.D., Yap, K.S., Gulley, S.M., Wolrich, G.M.: Systems, methods, and apparatuses for decompression using hardware and software (2017). US Patent 9,614,544
– reference: Dan Bouvier Jim Gibney, A.B., Arora, S.: Delivering a New Level of Visual Performance in an SoC. https://www.slideshare.net/AMD/delivering-a-new-level-of-visual-performance-in-an-soc-amd-raven-rdige-apu (2018). Accessed 15 Oct 2018
– reference: Singh, D.P., Czajkowski, T.S., Ling, A.: Harnessing the power of FPGAs using altera’s OpenCL compiler. In: Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pp. 5–6. ACM (2013)
– reference: Qiao, W., Du, J., Fang, Z., Wang, L., Lo, M., Chang, M.C.F., Cong, J.: High-throughput lossless compression on tightly coupled CPU-FPGA platforms. In: FPGA, p. 291 (2018)
– reference: Agarwal, K.B., Hofstee, H.P., Jamsek, D.A., Martin, A.K.: High bandwidth decompression of variable length encoded data streams. US Patent 8,824,569 (2014)
– reference: SukhwaniBMinHThoennesMDubePBrezzoBAsaadSDillenbergerDEDatabase analytics: a reconfigurable-computing approachIEEE Micro2014341192910.1109/MM.2013.107
– reference: ZivJLempelAA universal algorithm for sequential data compressionIEEE Trans. Inf. Theory197723333734353021510.1109/TIT.1977.1055714
– reference: Kara, K., Alonso, G.: Fast and robust hashing for database operators. In: 26th International Conference on Field Programmable Logic and Applications (FPL), 2016, pp. 1–4. IEEE (2016)
– reference: WoodsLIstvánZAlonsoGIbex: an intelligent storage engine with support for advanced SQL offloadingProc. VLDB Endow.201471196397410.14778/2732967.2732972
– reference: Czajkowski, T.S., Aydonat, U., Denisenko, D., Freeman, J., Kinsner, M., Neto, D., Wong, J., Yiannacouras, P., Singh, D.P.: From OpenCL to high-performance hardware on FPGAs. In: 22nd International Conference on Field Programmable Logic and Applications (FPL), pp. 531–534. IEEE (2012)
– reference: Napatech: Napatech SmartNIC solution for hardware offload. https://www.napatech.com/support/resources/solution-descriptions/napatech-smartnic-solution-for-hardware-offload/. Accessed 28 Apr 2019
– reference: PCI-SIG: Specifications PCI-SIG. https://pcisig.com/specifications. Accessed 01 July 2019
– reference: WangWZhangMChenGJagadishHOoiBCTanKLDatabase meets deep learning: challenges and opportunitiesACM SIGMOD Rec.2016452172210.1145/3003665.3003669
– reference: Saitoh, M., Elsayed, E.A., Van Chu, T., Mashimo, S., Kise, K.: A high-performance and cost-effective hardware merge sorter without feedback datapath. In: 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 197–204. IEEE (2018)
– reference: KochDBeckhoffCTeichJHardware decompression techniques for FPGA-based embedded systemsACM Trans. Reconf. Technol. Syst.200922910.1145/1534916.1534919
– reference: Pilato, C., Ferrandi, F.: Bambu: a modular framework for the high level synthesis of memory-intensive applications. In: 2013 23rd International Conference on Field programmable Logic and Applications, pp. 1–4. IEEE (2013)
– reference: Fang, J., Chen, J., Lee, J., Al-Ars, Z., Hofstee, H.P.: A fine-grained parallel snappy decompressor for FPGAs using a relaxed execution model. In: 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 335–335. IEEE (2019)
– reference: Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona, A., Anderson, J.H., Brown, S., Czajkowski, T.: LegUp: high-level synthesis for FPGA-based processor/accelerator systems. In: Proceedings of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pp. 33–36. ACM (2011)
– reference: OpenPOWER: SNAP framework hardware and software. https://github.com/open-power/snap/. Accessed 03 June 2018
– reference: Stuecheli, J.: A new standard for high performance memory, acceleration and networks. http://opencapi.org/2017/04/opencapi-new-standard-high-performance-memory-acceleration-networks/. Accessed 3 June 2018
– reference: MahajanDKimJKSacksJArdalanAKumarAEsmaeilzadehHIn-RDBMS hardware acceleration of advanced analyticsProc. VLDB Endow.201811111317133110.14778/3236187.3236188
– reference: Wenzel, L., Schmid, R., Martin, B., Plauth, M., Eberhardt, F., Polze, A.: Getting started with CAPI SNAP: hardware development for software engineers. In: European Conference on Parallel Processing, pp. 187–198. Springer (2018)
– reference: Ouyang, J., Qi, W., Yong, W., Tu, Y., Wang, J., Jia, B.: SDA: software-defined accelerator for general-purpose distributed big data analysis system. In: Hot Chips: A Symposium on High Performance Chips, Hotchips (2016)
– reference: Srivastava, A., Chen, R., Prasanna, V.K., Chelmis, C.: A hybrid design for high performance large-scale sorting on FPGA. In: International Conference on ReConFigurable Computing and FPGAs (ReConFig), 2015, pp. 1–6. IEEE (2015)
– reference: Cong, J., Huang, M., Wu, D., Yu, C.H.: heterogeneous datacenters: options and opportunities. In: Proceedings of the 53rd Annual Design Automation Conference, p. 16. ACM (2016)
– reference: Thompto, B.: POWER9: processor for the cognitive era. In: Hot Chips 28 Symposium (HCS), 2016 IEEE, pp. 1–19. IEEE (2016)
– reference: Francisco, P., et al.: The Netezza data appliance architecture: a platform for high performance data warehousing and analytics. http://www.ibmbigdatahub.com/sites/default/files/document/redguide_2011.pdf (2011). Accessed 3 June 2018
– reference: Fang, J., Chen, J., Al-Ars, Z., Hofstee, P., Hidders, J.: A high-bandwidth Snappy decompressor in reconfigurable logic: work-in-progress. In: Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis, pp. 16:1–16:2. IEEE Press (2018)
– reference: Feist, T.: Vivado design suite. White Paper, vol. 5 (2012)
– reference: Benton, B.: CCIX, Gen-Z, OpenCAPI: overview and comparison. https://www.openfabrics.org/images/eventpresos/2017presentations/213_CCIXGen-Z_BBenton.pdf (2017). Accessed 3 June 2018
– reference: Van Lunteren, J., Rohrer, J., Atasu, K., Hagleitner, C.: Regular expression acceleration at multiple tens of Gb/s. In: 1st Workshop on Accelerators for High-Performance Architectures in Conjunction with ICS (2009)
– reference: KimCKaldeweyTLeeVWSedlarENguyenADSatishNChhuganiJDi BlasADubeyPSort vs. hash revisited: fast join implementation on modern multi-core CPUsProc. VLDB Endow.2009221378138910.14778/1687553.1687564
– reference: Xilinx: GZIP/ZLIB/Deflate data compression core. http://www.cast-inc.com/ip-cores/data/zipaccel-d/cast-zipaccel-d-x.pdf (2016). Accessed 03 Aug 2018
– reference: Nallatech: OpenCAPI enabled FPGAs—the perfect bridge to a data centric world. https://openpowerfoundation.org/wp-content/uploads/2018/10/Allan-Cantle.Nallatech-Presentation-2018-OPF-Summit_Amsterdam-presentation.pdf (2018). Accessed 25 Oct 2018
– reference: Halstead, R.J., Absalyamov, I., Najjar, W.A., Tsotras, V.J.: FPGA-based Multithreading for In-Memory Hash Joins. In: CIDR (2015)
– reference: Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main memory hash join algorithms for multi-core CPUs. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pp. 37–48. ACM (2011)
– reference: Peltenburg, J., van Straten, J., Brobbel, M., Hofstee, H.P., Al-Ars, Z.: Supporting columnar in-memory formats on FPGA: the hardware design of fletcher for Apache Arrow. In: International Symposium on Applied Reconfigurable Computing, pp. 32–47. Springer (2019)
– reference: Marcelino, R., Neto, H.C., Cardoso, J.M.: Unbalanced FIFO sorting for FPGA-based systems. In: 16th IEEE International Conference on Electronics, Circuits, and Systems, 2009. ICECS 2009, pp. 431–434. IEEE (2009)
– reference: Sukhwani, B., Min, H., Thoennes, M., Dube, P., Iyer, B., Brezzo, B., Dillenberger, D., Asaad, S.: Database analytics acceleration using FPGAs. In: Proceedings of the 21st international conference on Parallel architectures and compilation techniques, pp. 411–420. ACM (2012)
– reference: Kickfire: Kickfire. http://www.kickfire.com. Accessed 3 June 2018
– reference: Apache: Apache Arrow. https://arrow.apache.org/. Accessed 01 Mar 2019
– reference: AsanovicKBodikRDemmelJKeavenyTKeutzerKKubiatowiczJMorganNPattersonDSenKWawrzynekJA view of the parallel computing landscapeCommun. ACM20095210566710.1145/1562764.1562783
– reference: Zeng, X.: FPGA-based high throughput merge sorter. Master’s Thesis, Delft University of Technology (2018)
– reference: Xilinx: UltraScale FPGA product tables and product selection guide. https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf (2018). Accessed 03 Sept 2018
– reference: Bartík, M., Ubik, S., Kubalik, P.: LZ4 compression algorithm on FPGA. In: IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 2015, pp. 179–182. IEEE (2015)
– reference: Papaphilippou, P., Luk, W.: Accelerating database systems using FPGAs: a survey. In: 2018 28th International Conference on Field Programmable Logic and Applications (FPL), pp. 125–1255. IEEE (2018)
– reference: Apache: Apache Parquet. http://parquet.apache.org/. Accessed 01 Dec 2018
– reference: NaneRSimaVMPilatoCChoiJFortBCanisAChenYTHsiaoHBrownSFerrandiFA survey and evaluation of FPGA high-level synthesis toolsIEEE Trans. Comput. Aided Des. Integr. Circuits Syst.201635101591160410.1109/TCAD.2015.2513673
– reference: Lang, H., Leis, V., Albutiu, M.C., Neumann, T., Kemper, A.: Massively parallel NUMA-aware hash joins. In: In Memory Data Management and Analysis, pp. 3–14. Springer (2015)
– reference: Mellanox Technologies: Mellanox Innova™-2 flex open programmable SmartNIC. http://www.mellanox.com/page/products_dyn?product_family=276&mtag=programmable_adapter_cards_innova2flex. Accessed 28 Apr 2019
– reference: StorerJASzymanskiTGData compression via textual substitutionJ. ACM198229492895167425210.1145/322344.322346
– reference: Casper, J., Olukotun, K.: Hardware acceleration of database operations. In: Proceedings of the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 151–160. ACM (2014)
– reference: David, H., Fallin, C., Gorbatov, E., Hanebutte, U.R., Mutlu, O.: Memory power management via dynamic voltage/frequency scaling. In: Proceedings of the 8th ACM international conference on Autonomic computing, pp. 31–40. ACM (2011)
– reference: Fossum, G.C., Wang, T., Hofstee, H.P.: A 64GB sort at 28GB/s on a 4-GPU POWER9 node for 16-byte records with uniformly distributed 8-byte keys. In: Proc. International Workshop on OpenPOWER for HPC. Frankfurt, Germany (2018)
– reference: Watanabe, Y., Lee, J., Boku, T., Sato, M.: Trade-off of offloading to FPGA in OpenMP task-based programming. In: International Workshop on OpenMP, pp. 96–110. Springer (2018)
– reference: Wu, L., Barker, R.J., Kim, M.A., Ross, K.A.: Hardware-accelerated range partitioning. Columbia University Computer Science Technical Reports (2012)
– reference: Chung, E.S., Davis, J.D., Lee, J.: Linqits: big data on little clients. In: ACM SIGARCH Computer Architecture News, vol. 41, pp. 261–272. ACM (2013)
– reference: Sidler, D., István, Z., Owaida, M., Kara, K., Alonso, G.: doppioDB: a hardware accelerated database. In: Proceedings of the 2017 ACM International Conference on Management of Data, pp. 1659–1662. ACM (2017)
– reference: Sharma, D.D.: Compute express link. https://docs.wixstatic.com/ugd/0c1418_d9878707bbb7427786b70c3c91d5fbd1.pdf (2019). Accessed 15 Apr 2019
– reference: Huebner, M., Ullmann, M., Weissel, F., Becker, J.: Real-time configuration code decompression for dynamic FPGA self-reconfiguration. In: Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International, p. 138. IEEE (2004)
– reference: Duhem, F., Muller, F., Lorenzini, P.: Farm: fast reconfiguration manager for reducing reconfiguration time overhead on fpga. In: International Symposium on Applied Reconfigurable Computing, pp. 253–260. Springer (2011)
– reference: Kocberber, O., Grot, B., Picorel, J., Falsafi, B., Lim, K., Ranganathan, P.: Meet the Walkers. PROC of the 46th MICRO pp. 1–12 (2013)
– reference: Franklin, M., Chamberlain, R., Henrichs, M., Shands, B., White, J.: An architecture for fast processing of large unstructured data sets. In: IEEE International Conference on Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings, pp. 280–287. IEEE (2004)
– reference: WelchTAA technique for high-performance data compressionComputer198417681910.1109/MC.1984.1659158
– reference: István, Z.: The glass half full: using programmable hardware accelerators in analytics. IEEE Data Eng. Bull. 42(1), 49–60 (2019). http://sites.computer.org/debull/A19mar/p49.pdf
– reference: Lei, J., Chen, Y., Li, Y., Cong, J.: A high-throughput architecture for lossless decompression on FPGA designed using HLS. In: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 277–277. ACM (2016)
– reference: CrockettLHElliotRAEnderwitzMAStewartRWThe Zynq Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc2014GlasgowStrathclyde Academic Media
– reference: Sidler, D., István, Z., Owaida, M., Alonso, G.: Accelerating pattern matching queries in hybrid CPU-FPGA architectures. In: Proceedings of the 2017 ACM International Conference on Management of Data, pp. 403–415. ACM (2017)
– reference: Intel, F.: SDK for OpenCL. Programming guide. UG-OCL002 31 (2016)
– reference: ZivJLempelACompression of individual sequences via variable-rate codingIEEE Trans. Inf. Theory197824553053650746510.1109/TIT.1978.1055934
– reference: Gopal, V., Gulley, S.M., Guilford, J.D.: Technologies for efficient lz77-based data decompression (2017). US Patent App. 15/374,462
– reference: Mueller, R., Teubner, J., Alonso, G.: Glacier: a query-to-hardware compiler. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 1159–1162. ACM (2010)
– reference: Fowers, J., Kim, J.Y., Burger, D., Hauck, S.: A scalable high-bandwidth architecture for lossless compression on FPGAs. In: IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2015, pp. 52–59. IEEE (2015)
– reference: ScofieldTCDelmericoJAChaudharyVValenteGXtremeData dbX: an FPGA-based data warehouse applianceComput. Sci. Eng.2010124667310.1109/MCSE.2010.93
– reference: Wissolik, M., Zacher, D., Torza, A., Da, B.: Virtex UltraScale+ HBM FPGA: a revolutionary increase in memory performance. Xilinx Whitepaper (2017)
– reference: Ueda, T., Ito, M., Ohara, M.: A dynamically reconfigurable equi-joiner on FPGA. IBM Technical Report RT0969 (2015)
– reference: ZhangSHeJHeBLuMOmnidb: towards portable and efficient query processing on parallel cpu/gpu architecturesProc. VLDB Endow.20136121374137710.14778/2536274.2536319
– reference: AlbutiuMCKemperANeumannTMassively parallel sort-merge joins in main memory multi-core database systemsProc. VLDB Endow.20125101064107510.14778/2336664.2336678
– reference: Fang, J., Lee, J., Hofstee, H.P., Hidders, J.: Analyzing in-memory hash joins: granularity matters. In: Proceedings the 8th International Workshop on Accelerating Analytics and Data Management Systems Using Modern Processor and Storage Architectures, pp. 18–25 (2017)
– reference: MuellerRTeubnerJAlonsoGStreams on wires: a query compiler for FPGAsProc. VLDB Endow.20092122924010.14778/1687627.1687654
– reference: Collet, Y., et al.: Lz4: extremely fast compression algorithm. https://code.google.com (2013). Accessed 3 June 2018
– reference: YuanYLeeRZhangXThe Yin and Yang of processing data warehousing queries on GPU devicesProc. VLDB Endow.201361081782810.14778/2536206.2536210
– reference: Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the April 30–May 2, 1968, Spring Joint Computer Conference, pp. 307–314. ACM (1968)
– reference: Sadoghi, M., Javed, R., Tarafdar, N., Singh, H., Palaniappan, R., Jacobsen, H.A.: Multi-query stream processing on FPGAs. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1229–1232. IEEE (2012)
– reference: Mueller, R., Teubner, J.: FPGAs: a new point in the database design space. In: Proceedings of the 13th International Conference on Extending Database Technology, pp. 721–723. ACM (2010)
– reference: KahleJADayMNHofsteeHPJohnsCRMaeurerTRShippyDIntroduction to the cell multiprocessorIBM J. Res. Dev.2005494.558960410.1147/rd.494.0589
– reference: Ghodsnia, P., et al.: An in-GPU-memory column-oriented database for processing analytical workloads. In: The VLDB Ph.D. Workshop. VLDB Endowment, vol. 1 (2012)
– reference: MuellerRTeubnerJAlonsoGData processing on FPGAsProc. VLDB Endow.20092191092110.14778/1687627.1687730
– reference: Kinetica: Kinetica. http://www.kinetica.com/. Accessed 3 June 2018
– reference: Qiao, Y.: An FPGA-based snappy decompressor-filter. Master’s Thesis, Delft University of Technology (2018)
– reference: Zhou, X., Ito, Y., Nakano, K.: An efficient implementation of LZW decompression in the FPGA. In: IEEE International Parallel and Distributed Processing Symposium Workshops, 2016, pp. 599–607. IEEE (2016)
– reference: Nane, R., Sima, V.M., Olivier, B., Meeuws, R., Yankova, Y., Bertels, K.: DWARV 2.0: a CoSy-based C-to-VHDL hardware compiler. In: 22nd International Conference on Field Programmable Logic and Applications (FPL), pp. 619–622. IEEE (2012)
– reference: PCI-SIG: PCI-SIG ®\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textregistered $$\end{document} announces upcoming PCI express ®\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textregistered $$\end{document} 6.0 specification to reach 64 GT/s. https://www.businesswire.com/news/home/20190618005945/en/PCI-SIG%C2%AE-Announces-Upcoming-PCI-Express%C2%AE-6.0-Specification. Accessed 01 July 2019
– reference: Cong, J., Fang, Z., Lo, M., Wang, H., Xu, J., Zhang, S.: Understanding performance differences of FPGAs and GPUs. In: 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 93–96. IEEE (2018)
– reference: Wang, Z., He, B., Zhang, W.: A study of data partitioning on OpenCL-based FPGAs. In: 2015 25th International Conference on Field Programmable Logic and Applications (FPL), pp. 1–8. IEEE (2015)
– reference: Sitaridi, E., Mueller, R., Kaldewey, T., Lohman, G., Ross, K.A.: Massively-parallel lossless data decompression. In: 2016 45th International Conference on Parallel Processing (ICPP), pp. 242–247. IEEE (2016)
– reference: Fang, J., et al.: Adopting OpenCAPI for high bandwidth database accelerators. In: 3rd International Workshop on Heterogeneous High-Performance Reconfigurable Computing (2017)
– reference: Owaida, M., Sidler, D., Kara, K., Alonso, G.: Centaur: a framework for hybrid CPU-FPGA databases. In: IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2017, pp. 211–218. IEEE (2017)
– reference: Deutsch, P.: GZIP file format specification version 4.3. Technical Report, RFC Editor (1996)
– reference: MuellerRTeubnerJAlonsoGSorting networks on FPGAsVLDB J.201221112310.1007/s00778-011-0232-z
– reference: Jang, H., Kim, C., Lee, J.W.: Practical speculative parallelization of variable-length decompression algorithms. In: ACM SIGPLAN Notices, vol. 48, pp. 55–64. ACM (2013)
– ident: 581_CR142
– ident: 581_CR81
– volume: 4
  start-page: 314
  issue: 5
  year: 2011
  ident: 581_CR52
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/1952376.1952381
– ident: 581_CR19
  doi: 10.1109/MICRO.2016.7783710
– ident: 581_CR46
– ident: 581_CR5
– volume: 2
  start-page: 1378
  issue: 2
  year: 2009
  ident: 581_CR64
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/1687553.1687564
– ident: 581_CR113
  doi: 10.1145/3035918.3035954
– ident: 581_CR125
  doi: 10.1145/2370816.2370874
– ident: 581_CR66
– ident: 581_CR30
  doi: 10.1145/1998582.1998590
– volume: 21
  start-page: 1
  issue: 1
  year: 2012
  ident: 581_CR87
  publication-title: VLDB J.
  doi: 10.1007/s00778-011-0232-z
– volume-title: Data Compression: The Complete Reference
  year: 2004
  ident: 581_CR111
– ident: 581_CR89
– ident: 581_CR75
  doi: 10.1145/2463209.2488795
– ident: 581_CR14
  doi: 10.1145/1989323.1989328
– ident: 581_CR21
  doi: 10.1145/2508148.2485945
– ident: 581_CR37
– ident: 581_CR55
– ident: 581_CR108
  doi: 10.1109/FCCM.2018.00038
– ident: 581_CR145
– volume: 17
  start-page: 1297
  issue: 9
  year: 2009
  ident: 581_CR74
  publication-title: IEEE Trans. VLSI Syst.
  doi: 10.1109/TVLSI.2008.2003512
– volume: 38
  start-page: 23
  issue: 4
  year: 2013
  ident: 581_CR128
  publication-title: ACM Trans. Database Syst.
  doi: 10.1145/2536800
– volume: 5
  start-page: 1064
  issue: 10
  year: 2012
  ident: 581_CR3
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2336664.2336678
– ident: 581_CR49
– ident: 581_CR20
– ident: 581_CR40
– volume: 12
  start-page: 66
  issue: 4
  year: 2010
  ident: 581_CR106
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2010.93
– ident: 581_CR130
– ident: 581_CR1
  doi: 10.1145/2664666.2664670
– ident: 581_CR93
– ident: 581_CR102
  doi: 10.1109/FPL.2013.6645550
– ident: 581_CR136
  doi: 10.1007/978-3-030-10549-5_15
– volume-title: The Zynq Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc
  year: 2014
  ident: 581_CR27
– ident: 581_CR86
  doi: 10.1145/1807167.1807307
– ident: 581_CR138
– volume: 2
  start-page: 9
  issue: 2
  year: 2009
  ident: 581_CR68
  publication-title: ACM Trans. Reconf. Technol. Syst.
  doi: 10.1145/1534916.1534919
– ident: 581_CR148
– ident: 581_CR109
– volume: 2
  start-page: 229
  issue: 1
  year: 2009
  ident: 581_CR85
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/1687627.1687654
– ident: 581_CR35
  doi: 10.1109/FCCM.2019.00076
– ident: 581_CR44
– ident: 581_CR140
– volume: 52
  start-page: 56
  issue: 10
  year: 2009
  ident: 581_CR7
  publication-title: Commun. ACM
  doi: 10.1145/1562764.1562783
– ident: 581_CR92
– ident: 581_CR32
  doi: 10.17487/rfc1952
– ident: 581_CR73
  doi: 10.1145/2847263.2847305
– volume: 30
  start-page: 473
  issue: 4
  year: 2011
  ident: 581_CR26
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2011.2110592
– ident: 581_CR58
  doi: 10.1145/2499369.2465557
– volume: 27
  start-page: 1754
  issue: 7
  year: 2015
  ident: 581_CR10
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2014.2313874
– ident: 581_CR31
– ident: 581_CR112
– ident: 581_CR78
– ident: 581_CR61
  doi: 10.1145/3035918.3035946
– ident: 581_CR118
– ident: 581_CR47
– ident: 581_CR110
  doi: 10.1007/978-3-319-57972-6_10
– ident: 581_CR17
  doi: 10.1145/1950413.1950423
– ident: 581_CR69
  doi: 10.1145/1950413.1950427
– ident: 581_CR16
  doi: 10.1109/ICSAMOS.2009.5289237
– ident: 581_CR126
– ident: 581_CR22
– ident: 581_CR36
  doi: 10.1007/978-3-319-56111-0_2
– ident: 581_CR129
– ident: 581_CR67
  doi: 10.1145/2540708.2540748
– ident: 581_CR9
– ident: 581_CR18
  doi: 10.1145/2554688.2554787
– ident: 581_CR95
– ident: 581_CR11
– ident: 581_CR117
  doi: 10.1109/ASAP.2017.7995280
– ident: 581_CR134
  doi: 10.1007/978-3-319-98521-3_7
– ident: 581_CR24
  doi: 10.1145/2934583.2953984
– volume: 24
  start-page: 530
  issue: 5
  year: 1978
  ident: 581_CR150
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1978.1055934
– ident: 581_CR70
– volume: 45
  start-page: 17
  issue: 2
  year: 2016
  ident: 581_CR132
  publication-title: ACM SIGMOD Rec.
  doi: 10.1145/3003665.3003669
– ident: 581_CR12
  doi: 10.1145/1468075.1468121
– volume: 7
  start-page: 85
  issue: 1
  year: 2013
  ident: 581_CR8
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/2732219.2732227
– ident: 581_CR50
  doi: 10.1109/FCCM.2013.17
– ident: 581_CR71
  doi: 10.1007/978-3-319-13960-9_1
– ident: 581_CR56
– ident: 581_CR79
– ident: 581_CR28
  doi: 10.1109/FPL.2012.6339272
– ident: 581_CR90
  doi: 10.1109/FPL.2012.6339221
– ident: 581_CR100
– ident: 581_CR123
– ident: 581_CR114
  doi: 10.1145/3035918.3058746
– ident: 581_CR146
– ident: 581_CR62
– volume: 10
  start-page: 1706
  issue: 12
  year: 2017
  ident: 581_CR72
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3137765.3137776
– ident: 581_CR42
– volume: 34
  start-page: 19
  issue: 1
  year: 2014
  ident: 581_CR124
  publication-title: IEEE Micro
  doi: 10.1109/MM.2013.107
– ident: 581_CR94
– ident: 581_CR144
  doi: 10.1109/HPCS.2018.00030
– volume: 17
  start-page: 8
  issue: 6
  year: 1984
  ident: 581_CR135
  publication-title: Computer
  doi: 10.1109/MC.1984.1659158
– volume: 6
  start-page: 817
  issue: 10
  year: 2013
  ident: 581_CR143
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2536206.2536210
– ident: 581_CR6
  doi: 10.1109/FPL.2014.6927484
– ident: 581_CR39
  doi: 10.1007/978-3-030-02465-9_25
– ident: 581_CR137
– ident: 581_CR98
  doi: 10.1109/FPL.2018.00030
– volume: 5
  start-page: 1
  issue: 2
  year: 2013
  ident: 581_CR127
  publication-title: Synth. Lect. Data Manag.
  doi: 10.2200/S00514ED1V01Y201306DTM035
– volume: 35
  start-page: 1591
  issue: 10
  year: 2016
  ident: 581_CR91
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2015.2513673
– ident: 581_CR141
– volume: 23
  start-page: 337
  issue: 3
  year: 1977
  ident: 581_CR149
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1977.1055714
– ident: 581_CR97
– ident: 581_CR34
  doi: 10.1109/CODESISSS.2018.8525953
– ident: 581_CR33
  doi: 10.1007/978-3-642-19475-7_26
– ident: 581_CR4
– ident: 581_CR45
– ident: 581_CR15
  doi: 10.1007/978-3-662-45761-0_1
– ident: 581_CR120
– ident: 581_CR101
  doi: 10.1007/978-3-030-17227-5_3
– ident: 581_CR65
– volume: 42
  start-page: 13
  issue: 3
  year: 2014
  ident: 581_CR103
  publication-title: ACM SIGARCH Comput. Archit. News
  doi: 10.1145/2678373.2665678
– volume: 49
  start-page: 589
  issue: 4.5
  year: 2005
  ident: 581_CR59
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.494.0589
– volume: 2
  start-page: 910
  issue: 1
  year: 2009
  ident: 581_CR84
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/1687627.1687730
– ident: 581_CR38
– ident: 581_CR13
– ident: 581_CR115
  doi: 10.1145/2435264.2435268
– ident: 581_CR133
  doi: 10.1109/FPL.2015.7293941
– ident: 581_CR29
– ident: 581_CR54
– ident: 581_CR77
– ident: 581_CR119
– ident: 581_CR60
– ident: 581_CR48
– ident: 581_CR83
  doi: 10.1145/1739041.1739137
– ident: 581_CR41
– ident: 581_CR105
– ident: 581_CR131
– ident: 581_CR25
  doi: 10.1145/2897937.2905012
– ident: 581_CR96
– volume: 34
  start-page: 21
  issue: 4
  year: 2009
  ident: 581_CR51
  publication-title: ACM Trans. Database Syst.
  doi: 10.1145/1620585.1620588
– volume: 11
  start-page: 1317
  issue: 11
  year: 2018
  ident: 581_CR76
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3236187.3236188
– ident: 581_CR107
  doi: 10.1109/ICDE.2012.39
– ident: 581_CR104
  doi: 10.1145/3174243.3174987
– ident: 581_CR80
– ident: 581_CR82
  doi: 10.1145/1559845.1559965
– volume: 6
  start-page: 709
  issue: 9
  year: 2013
  ident: 581_CR53
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2536360.2536370
– ident: 581_CR99
– ident: 581_CR2
– ident: 581_CR63
– ident: 581_CR43
– volume: 12
  start-page: 66
  issue: 1–3
  year: 2010
  ident: 581_CR121
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2010.69
– ident: 581_CR116
  doi: 10.1109/ICPP.2016.35
– ident: 581_CR23
  doi: 10.1109/FCCM.2018.00023
– ident: 581_CR88
– volume: 7
  start-page: 963
  issue: 11
  year: 2014
  ident: 581_CR139
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2732967.2732972
– volume: 29
  start-page: 928
  issue: 4
  year: 1982
  ident: 581_CR122
  publication-title: J. ACM
  doi: 10.1145/322344.322346
– ident: 581_CR57
– volume: 6
  start-page: 1374
  issue: 12
  year: 2013
  ident: 581_CR147
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2536274.2536319
SSID ssj0002225
Score 2.5135279
Snippet While FPGAs have seen prior use in database systems, in recent years interest in using FPGA to accelerate databases has declined in both industry and academia...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 33
SubjectTerms Acceleration
Algorithms
Bandwidths
Circuit design
Computer Science
Database Management
Field programmable gate arrays
Graphics processing units
Special Issue Paper
Virtual memory systems
Title In-memory database acceleration on FPGAs: a survey
URI https://link.springer.com/article/10.1007/s00778-019-00581-w
https://www.proquest.com/docview/2348263374
Volume 29
WOSCitedRecordID wos000492650700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Online Journals
  customDbUrl:
  eissn: 0949-877X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002225
  issn: 1066-8888
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509eDF9Ymrq-TgTQNNm83D2yKuCrIsvvBW0jQFQats98H-e5Ns20VRQaG3piFMZvLNdCbfABxbzIlSSkKsEpFiGpoUK8kkFpowpUhgksxT5t_wfl88PclBeSmsqKrdq5SkP6nry26OecYVXknseuERPF2GFQt3wpnj7d1jff66CMbnOBnDNr4T5VWZ7-f4DEcLH_NLWtSjTa_5v3VuwHrpXaLuXB02YcnkW9CsOjeg0pC3IbzO8aursZ0hVyLqoAwprS0EzRUC2ac3uOwWZ0ihYjycmNkOPPQu7s-vcNk9AWuLMSPseJNZojWVIrAQRCMrKmMoD3gmsoAqzSPDpFF2tSG3gYxQvKNVKLNOIhMRptEuNPK33OwB0o6ErkMyTqmhhjGpSWqsr5ZGpJPaAK0FpBJirEtqcdfh4iWuSZG9UGIrlNgLJZ624KT-5n1OrPHr6Ha1N3FpZEUcOmIeFkWctuC02ovF659n2__b8ANYC12U7X-8tKExGo7NIazqyei5GB555fsA0R7RRw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1Dz4poF-ZGni2xDnhnMMneJbSdMUBK2y7oP99yZZ26GooNC3piFcLvnd9e5-B3CqMcePiethEbEYE0_FWHDKMZMuFcJ1VJRYyvxu0Ouxpyfez4vCsiLbvQhJ2pu6LHYzzDMm8Ypj0wvPxdNlWCEasUwi3939Y3n_Gg_Gxjgpxdq_Y3mpzPdzfIajhY35JSxq0aZV_d86N2Ejty5Rc64OW7Ck0m2oFp0bUH6Qd8DrpPjV5NjOkEkRNVCGhJQaguYKgfTT6l83swskUDYeTtRsFx5aV4PLNs67J2CpMWaEDW8yjaQknDkagojvcKYUCZwgYYlDhAx8RbkSerVeoB0ZJoKGFB5PGhGPmBf7e1BJ31K1D0gaErqGmwSEKKIo5dKNlbbVYt9txNpBq4FbCDGUObW46XDxEpakyFYooRZKaIUSTmtwVn7zPifW-HV0vdibMD9kWegZYh7q-wGpwXmxF4vXP8928LfhJ7DWHtx2w26nd3MI657xuO1PmDpURsOxOoJVORk9Z8Njq4gfqkfUKw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1D74pmH9SNPEt6FOh2MM_GBvJU1TELSOtdvYf2_Sr6moIELfmoRwufR317v7HcCpwhwnxJaNeEBDhG0ZIs4IQ1RYhHPLlEGUUeb3vH6fDods8KGKP8t2L0OSeU2DZmmK09YojFpV4ZtmodFJWAzpvngWmi3DCtZNg7S_fv9UfYu1N5PFOwlBytejRdnM92t8hqaFvfklRJohT6f-_z1vwkZhdRrtXE22YEnG21AvOzoYxQXfAbsbo1edezs3dOqohjiDC6GgKVcUQz2dwU07uTC4kUzGUznfhcfO9cPlLSq6KiChsCdFmk-ZBEJgRk0FTdgxGZUSe6YX0cjEXHiOJExytVvbUw4O5Z4ruM0iN2ABtUNnD2rxWyz3wRCanM61Ig9jiSUhTFihVDZc6FhuqBy3BlilQH1RUI7rzhcvfkWWnAnFV0LxM6H4swacVXNGOeHGr6Ob5Tn5xeVLfFsT9hDH8XADzstzWbz-ebWDvw0_gbXBVcfvdft3h7Bua0c8-zfThFo6nsgjWBXT9DkZH2c6-Q4VWd0P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-memory+database+acceleration+on+FPGAs%3A+a+survey&rft.jtitle=The+VLDB+journal&rft.au=Fang%2C+Jian&rft.au=Mulder%2C+Yvo+T.+B.&rft.au=Hidders%2C+Jan&rft.au=Lee%2C+Jinho&rft.date=2020-01-01&rft.issn=1066-8888&rft.eissn=0949-877X&rft.volume=29&rft.issue=1&rft.spage=33&rft.epage=59&rft_id=info:doi/10.1007%2Fs00778-019-00581-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00778_019_00581_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-8888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-8888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-8888&client=summon