New estimates considering the generalized proportional Hadamard fractional integral operators
In the article, we describe the Grüss type inequality, provide some related inequalities by use of suitable fractional integral operators, address several variants by utilizing the generalized proportional Hadamard fractional (GPHF) integral operator. It is pointed out that our introduced new integr...
Uloženo v:
| Vydáno v: | Advances in difference equations Ročník 2020; číslo 1; s. 1 - 15 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
09.06.2020
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1687-1847, 1687-1839, 1687-1847 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the article, we describe the Grüss type inequality, provide some related inequalities by use of suitable fractional integral operators, address several variants by utilizing the generalized proportional Hadamard fractional (GPHF) integral operator. It is pointed out that our introduced new integral operators with nonlocal kernel have diversified applications. Our obtained results show the computed outcomes for an exceptional choice to the GPHF integral operator with parameter and the proportionality index. Additionally, we illustrate two examples that can numerically approximate these operators. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1687-1847 1687-1839 1687-1847 |
| DOI: | 10.1186/s13662-020-02730-w |