When microplastics/plastics meet metal-organic frameworks: turning threats into opportunities

Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal-organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation,...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) Vol. 15; no. 43; pp. 17781 - 17798
Main Authors: Wu, Pengfei, Guo, Mengting, Zhang, Ran-Wei, Huang, Qing, Wang, Guibin, Lan, Ya-Qian
Format: Journal Article
Language:English
Published: England Royal Society of Chemistry 08.10.2024
The Royal Society of Chemistry
Subjects:
ISSN:2041-6520, 2041-6539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal-organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials via the hydrophobic interaction, electrical attraction, π-π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C-O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities ( e.g. , as ligands to prepare MOF or MOF@plastic materials for further applications). The study discussed how MOFs treat microplastics, how to make plastic-based MOFs, and how MOF@plastic composites can be used. It aids in understanding how to convert plastic/microplastic concerns into opportunities for high-valued products.
AbstractList Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal–organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials via the hydrophobic interaction, electrical attraction, π–π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C–O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities ( e.g. , as ligands to prepare MOF or MOF@plastic materials for further applications).
Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal-organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials via the hydrophobic interaction, electrical attraction, π-π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C-O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities ( e.g. , as ligands to prepare MOF or MOF@plastic materials for further applications). The study discussed how MOFs treat microplastics, how to make plastic-based MOFs, and how MOF@plastic composites can be used. It aids in understanding how to convert plastic/microplastic concerns into opportunities for high-valued products.
Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal–organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials via the hydrophobic interaction, electrical attraction, π–π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C–O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities (e.g., as ligands to prepare MOF or MOF@plastic materials for further applications). The study discussed how MOFs treat microplastics, how to make plastic-based MOFs, and how MOF@plastic composites can be used. It aids in understanding how to convert plastic/microplastic concerns into opportunities for high-valued products.
Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal-organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials via the hydrophobic interaction, electrical attraction, π-π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C-O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities (e.g., as ligands to prepare MOF or MOF@plastic materials for further applications).Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal-organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials via the hydrophobic interaction, electrical attraction, π-π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C-O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities (e.g., as ligands to prepare MOF or MOF@plastic materials for further applications).
Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal–organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials via the hydrophobic interaction, electrical attraction, π–π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C–O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities (e.g., as ligands to prepare MOF or MOF@plastic materials for further applications).
Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal-organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials the hydrophobic interaction, electrical attraction, π-π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C-O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities ( , as ligands to prepare MOF or MOF@plastic materials for further applications).
Author Guo, Mengting
Huang, Qing
Wang, Guibin
Lan, Ya-Qian
Zhang, Ran-Wei
Wu, Pengfei
AuthorAffiliation Nanjing Forestry University
South China Normal University
Co-Innovation Center for Sustainable Forestry in Southern China
College of Materials Science and Engineering
State Key Laboratory of Tree Genetics and Breeding
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
School of Chemistry
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Tree Genetics and Breeding
– sequence: 0
  name: Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
– sequence: 0
  name: School of Chemistry
– sequence: 0
  name: Co-Innovation Center for Sustainable Forestry in Southern China
– sequence: 0
  name: South China Normal University
– sequence: 0
  name: Nanjing Forestry University
– sequence: 0
  name: College of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Pengfei
  surname: Wu
  fullname: Wu, Pengfei
– sequence: 2
  givenname: Mengting
  surname: Guo
  fullname: Guo, Mengting
– sequence: 3
  givenname: Ran-Wei
  surname: Zhang
  fullname: Zhang, Ran-Wei
– sequence: 4
  givenname: Qing
  surname: Huang
  fullname: Huang, Qing
– sequence: 5
  givenname: Guibin
  surname: Wang
  fullname: Wang, Guibin
– sequence: 6
  givenname: Ya-Qian
  surname: Lan
  fullname: Lan, Ya-Qian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39421205$$D View this record in MEDLINE/PubMed
BookMark eNptks9rFDEUx4NUbF178a4MeCnCtPk1M5teRFarQqEHW3qSkMm87KbOJGOSqfjfm3W7W1uakORBPt_Hy_flJdpz3gFCrwk-JpiJk45HjSuKK_MMHVDMSVlXTOztYor30WGMNzgPxkhFmxdonwlOSdYcoB_XK3DFYHXwY69isjqebINiAEh5S6ovfVgqZ3Vhghrgtw8_42mRpuCsWxZpFUClWFiXfOHH0Yc0OZssxFfouVF9hMO7c4auzj5fLr6W5xdfvi0-npeaU5FKzVjHKk15TZq8oGWN1lrproY8BdVgupZi1ol5U7fzZm5Ia1owLRUY19qwGfqwyTtO7QCdBpeC6uUY7KDCH-mVlQ9vnF3Jpb-VhPCGi2zkDB3dZQj-1wQxycFGDX2vHPgpSkZII0Qm1-i7R-iNz07k92WKciYqPG8y9fb_kna1bK3PAN4A2foYAxipbVLJ-nWFtpcEy3WD5Sf-ffGvwWdZ8v6RZJv1SfjNBg5R77j738L-Aq14se8
CitedBy_id crossref_primary_10_1007_s11356_025_36153_5
crossref_primary_10_1016_j_colsurfa_2025_137476
crossref_primary_10_1016_j_jpowsour_2025_237156
crossref_primary_10_1016_j_jece_2025_119276
crossref_primary_10_1016_j_ccr_2025_216669
crossref_primary_10_1016_j_joei_2025_102239
crossref_primary_10_1002_adom_202500856
crossref_primary_10_1016_j_cej_2025_163895
crossref_primary_10_1016_j_progpolymsci_2025_101958
crossref_primary_10_1039_D4TA07876D
crossref_primary_10_1016_j_jhazmat_2025_139040
crossref_primary_10_1039_D5MH00512D
Cites_doi 10.1002/ange.201915766
10.1016/j.cej.2022.140405
10.1021/acsaenm.2c00174
10.1016/j.ijhydene.2019.09.167
10.1038/s41467-018-07882-8
10.1126/sciadv.add5598
10.1016/j.chemosphere.2022.136682
10.1021/acsami.1c21284
10.1002/chem.201404093
10.1016/j.ijhydene.2015.06.109
10.1038/s41467-017-02088-w
10.1002/adma.201606221
10.1016/j.susmat.2016.10.001
10.1039/C7NJ03851H
10.1038/532435a
10.1007/978-3-319-61615-5
10.1016/j.jhazmat.2021.125992
10.1016/j.scitotenv.2018.08.353
10.1016/j.scitotenv.2018.09.049
10.1016/j.jssc.2019.04.021
10.1002/ange.201915988
10.1002/adma.200801753
10.1038/s41566-021-00769-z
10.1002/anie.202117528
10.1021/acsami.3c01897
10.1016/j.chempr.2020.11.019
10.1016/j.bios.2019.111470
10.1016/j.chempr.2020.12.021
10.1038/s41467-022-31163-0
10.1016/j.scitotenv.2020.136924
10.1038/s41586-021-03251-6
10.1016/j.jhazmat.2022.129361
10.1002/advs.201902020
10.1021/ie0488187
10.1016/j.apcatb.2022.121940
10.1016/j.dyepig.2022.110648
10.1016/j.cej.2021.133341
10.1016/j.jssc.2022.123003
10.1016/j.cej.2022.140390
10.1021/ja500671h
10.1016/j.jpowsour.2022.231685
10.1002/etc.3881
10.1016/j.ijhydene.2016.08.040
10.1021/acs.jchemed.9b00337
10.1039/D0GC00353K
10.1007/s10562-016-1897-0
10.1038/s41929-021-00648-4
10.1002/er.8630
10.1080/14686996.2023.2189890
10.1002/mame.200390034
10.1016/j.jhazmat.2022.128431
10.1038/s41570-020-00235-4
10.1016/j.scitotenv.2022.160108
10.1016/j.ccr.2022.214986
10.1016/j.apcatb.2020.119295
10.1039/C6TB00276E
10.1038/nmat4805
10.1002/hlca.19980810320
10.1080/01496395.2019.1577266
10.1016/j.micromeso.2019.109674
10.1039/D2QI00682K
10.1002/anie.201915766
10.1016/j.apcatb.2022.121300
10.1016/j.jhazmat.2020.124833
10.1016/j.bios.2014.10.010
10.1016/j.jclepro.2020.121492
10.1039/D0TA04891G
10.1021/bk-2021-1394.ch001
10.1126/sciadv.1700782
10.1038/nnano.2015.251
10.1007/s12034-021-02537-9
10.1021/acs.iecr.9b02205
10.1016/j.seppur.2023.125816
10.1016/j.scitotenv.2020.141514
10.1039/D0GC03536J
10.1021/ar400151n
10.1021/acsami.1c09202
10.1016/j.snb.2020.128627
10.1021/jacs.8b04404
10.1515/gps-2021-0036
10.1016/j.chempr.2019.10.012
10.1016/j.ijhydene.2018.08.007
10.1002/marc.201900333
10.1039/C7TA00900C
10.1021/acsomega.2c05310
10.1039/D1NR08120A
10.1002/pat.5127
10.1016/j.nanoen.2020.104499
10.1038/ncomms3751
10.1007/s40242-021-1317-x
10.1016/j.cej.2021.132351
10.1021/acsomega.2c04264
10.1016/j.wasman.2021.09.009
10.1002/adma.201603074
10.1038/s41578-021-00291-2
10.1038/s41566-019-0437-z
10.1021/acsestwater.3c00386
10.1021/acsami.0c20437
10.1038/s41467-022-32903-y
10.1016/j.seppur.2021.119655
10.1126/science.abe5041
10.1016/j.talanta.2022.123942
10.1016/j.scitotenv.2018.03.051
10.1016/j.dyepig.2021.110016
10.1126/science.aaq0324
10.1016/j.jclepro.2021.126963
10.1039/D2DT02406C
10.1021/acs.estlett.0c01002
10.1016/j.chemosphere.2022.133672
10.1016/j.inoche.2021.109182
10.1021/acssuschemeng.0c08012
10.1039/C9CC02861G
10.1007/s10853-023-08468-6
10.1021/acs.est.2c03980
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2024
This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2024
– notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d4sc05205f
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 17798
ExternalDocumentID PMC11474910
39421205
10_1039_D4SC05205F
d4sc05205f
Genre Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: 22106130; 22101089; 22471126; 22225109
GroupedDBID -JG
0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
ABEMK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
AAYXX
ABIQK
AFPKN
AGMRB
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c429t-c33d35c24617461eb37cccacd6e6e692cefdb203d9876b878f1bfbefb29006cf3
IEDL.DBID RRC
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001334414600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-6520
IngestDate Tue Nov 04 02:04:56 EST 2025
Thu Oct 02 11:21:54 EDT 2025
Sat Jul 26 00:01:55 EDT 2025
Mon Jul 21 06:02:20 EDT 2025
Sat Nov 29 02:48:20 EST 2025
Tue Nov 18 22:22:59 EST 2025
Tue Dec 17 20:57:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
License This journal is © The Royal Society of Chemistry.
This article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-c33d35c24617461eb37cccacd6e6e692cefdb203d9876b878f1bfbefb29006cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally to the work.
ORCID 0009-0007-9850-9989
OpenAccessLink http://dx.doi.org/10.1039/d4sc05205f
PMID 39421205
PQID 3124395087
PQPubID 2047492
PageCount 18
ParticipantIDs crossref_citationtrail_10_1039_D4SC05205F
proquest_miscellaneous_3117999100
pubmed_primary_39421205
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11474910
rsc_primary_d4sc05205f
crossref_primary_10_1039_D4SC05205F
proquest_journals_3124395087
PublicationCentury 2000
PublicationDate 2024-10-08
PublicationDateYYYYMMDD 2024-10-08
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-08
  day: 08
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2024
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Bacha (D4SC05205F/cit66/1) 2023; 858
Sarno (D4SC05205F/cit64/1) 2021; 8
Wan (D4SC05205F/cit123/1) 2022; 10
Chen (D4SC05205F/cit14/1) 2022; 9
Pander (D4SC05205F/cit58/1) 2021; 13
Suo (D4SC05205F/cit56/1) 2017; 147
Wu (D4SC05205F/cit16/1) 2024; 4
Hu (D4SC05205F/cit75/1) 2022; 2194
Jie (D4SC05205F/cit18/1) 2024; 4
Jiao (D4SC05205F/cit24/1) 2020; 132
Koros (D4SC05205F/cit29/1) 2017; 16
Mukherjee (D4SC05205F/cit91/1) 2022; 46
Guan (D4SC05205F/cit110/1) 2023; 15
Song (D4SC05205F/cit121/1) 2022; 51
Vethaak (D4SC05205F/cit1/1) 2021; 371
Wu (D4SC05205F/cit45/1) 2022; 61
Min (D4SC05205F/cit94/1) 2021; 14
Lee (D4SC05205F/cit11/1) 2022; 430
Zhao (D4SC05205F/cit88/1) 2018; 43
Slater (D4SC05205F/cit27/1) 2019; 55
Wu (D4SC05205F/cit38/1) 2019; 650
Mohana (D4SC05205F/cit42/1) 2022; 309
Geyer (D4SC05205F/cit5/1) 2017; 3
Gazi (D4SC05205F/cit49/1) 2019; 6
Zhang (D4SC05205F/cit63/1) 2022; 310
Yusuf (D4SC05205F/cit57/1) 2022; 7
Zhu (D4SC05205F/cit93/1) 2022; 136
Qu (D4SC05205F/cit114/1) 2022; 309
Ellis (D4SC05205F/cit61/1) 2021; 4
Bertrand (D4SC05205F/cit102/1) 2021; 32
Wang (D4SC05205F/cit118/1) 2022; 7
Dyosiba (D4SC05205F/cit77/1) 2016; 10
MacKenzie (D4SC05205F/cit99/1) 2021; 5
Pham (D4SC05205F/cit67/1) 2021; 23
Zhong (D4SC05205F/cit86/1) 2019; 44
Wang (D4SC05205F/cit32/1) 2018; 9
Gray (D4SC05205F/cit12/1) 2017; 36
Perego (D4SC05205F/cit71/1) 2021; 15
Liu (D4SC05205F/cit59/1) 2021; 1394
Zhou (D4SC05205F/cit81/1) 2019; 290
Huang (D4SC05205F/cit85/1) 2024
Bertrand (D4SC05205F/cit92/1) 2014; 20
Xing (D4SC05205F/cit90/1) 2020; 278
Liu (D4SC05205F/cit50/1) 2020; 70
Ou (D4SC05205F/cit98/1) 2021; 590
Peterson (D4SC05205F/cit36/1) 2021; 6
Genta (D4SC05205F/cit68/1) 2005; 44
Schmidt (D4SC05205F/cit69/1) 2020; 41
Wang (D4SC05205F/cit105/1) 2014; 136
Dyosiba (D4SC05205F/cit78/1) 2019; 58
Singh (D4SC05205F/cit73/1) 2018; 42
Ren (D4SC05205F/cit104/1) 2022; 14
Biamonte (D4SC05205F/cit44/1) 1998; 26
Lin (D4SC05205F/cit35/1) 2020; 6
Isobe (D4SC05205F/cit3/1) 2019; 10
Vanapalli (D4SC05205F/cit4/1) 2021; 750
Jia (D4SC05205F/cit72/1) 2021; 13
Liu (D4SC05205F/cit117/1) 2023; 58
Chen (D4SC05205F/cit23/1) 2021; 7
Biermann (D4SC05205F/cit60/1) 2021; 10
He (D4SC05205F/cit20/1) 2022
Zeng (D4SC05205F/cit97/1) 2020; 32
Wang (D4SC05205F/cit119/1) 2015; 65
Yang (D4SC05205F/cit55/1) 2021; 9
Doan (D4SC05205F/cit74/1) 2020; 55
Roshanravan (D4SC05205F/cit83/1) 2021; 300
Haris (D4SC05205F/cit41/1) 2023; 455
Qin (D4SC05205F/cit48/1) 2022; 319
Wang (D4SC05205F/cit28/1) 2022; 7
Jin (D4SC05205F/cit8/1) 2019; 649
You (D4SC05205F/cit40/1) 2022; 38
El-Sayed (D4SC05205F/cit51/1) 2020; 22
Lu (D4SC05205F/cit9/1) 2018; 631–632
Kalimuthu (D4SC05205F/cit30/1) 2022; 294
Kaur (D4SC05205F/cit26/1) 2021; 417
Cao (D4SC05205F/cit111/1) 2020; 324
Garcia (D4SC05205F/cit22/1) 2017; 358
Chen (D4SC05205F/cit47/1) 2021; 7
Zhou (D4SC05205F/cit100/1) 2015; 10
Lu (D4SC05205F/cit106/1) 2023; 14
Wu (D4SC05205F/cit13/1) 2022; 437
Liang (D4SC05205F/cit108/1) 2019; 276
Chen (D4SC05205F/cit120/1) 2019; 141
Gutiérrez-Serpa (D4SC05205F/cit113/1) 2022; 14
Goje (D4SC05205F/cit53/1) 2003; 288
Wu (D4SC05205F/cit6/1) 2022; 429
Zhu (D4SC05205F/cit65/1) 2020; 132
Dhillon (D4SC05205F/cit87/1) 2022; 431
Boukayouht (D4SC05205F/cit52/1) 2023; 478
Liang (D4SC05205F/cit115/1) 2023; 253
Guimaraes (D4SC05205F/cit10/1) 2021; 407
Pasanen (D4SC05205F/cit39/1) 2022; 455
Okoffo (D4SC05205F/cit15/1) 2020; 715
Yang (D4SC05205F/cit62/1) 2021; 135
Jiao (D4SC05205F/cit19/1) 2020; 59
Ren (D4SC05205F/cit96/1) 2018; 140
Mastropietro (D4SC05205F/cit37/1) 2023; 24
Zhang (D4SC05205F/cit103/1) 2023; 10
Huang (D4SC05205F/cit33/1) 2022; 8
Katuri (D4SC05205F/cit84/1) 2016; 28
Perego (D4SC05205F/cit70/1) 2022; 13
Wang (D4SC05205F/cit112/1) 2022; 9
Wang (D4SC05205F/cit122/1) 2016; 4
Sholl (D4SC05205F/cit76/1) 2016; 532
Ma (D4SC05205F/cit116/1) 2022; 206
Ren (D4SC05205F/cit80/1) 2015; 40
Cabrera-unguia (D4SC05205F/cit54/1) 2021; 44
Statista (D4SC05205F/cit2/1)
Zhang (D4SC05205F/cit21/1) 2022; 13
Qin (D4SC05205F/cit89/1) 2022; 541
Wagner (D4SC05205F/cit17/1) 2018
Ren (D4SC05205F/cit79/1) 2016; 41
Sindoro (D4SC05205F/cit107/1) 2014; 47
Zhou (D4SC05205F/cit109/1) 2022; 198
Lin (D4SC05205F/cit7/1) 2022; 56
Modak (D4SC05205F/cit124/1) 2023; 1
Pedrero (D4SC05205F/cit43/1) 2024; 333
Chen (D4SC05205F/cit46/1) 2017; 29
Doty (D4SC05205F/cit95/1) 2009; 21
Chen (D4SC05205F/cit125/1) 2020; 8
Huang (D4SC05205F/cit31/1) 2017; 5
Panda (D4SC05205F/cit34/1) 2020; 97
Gnanasekaran (D4SC05205F/cit126/1) 2021; 277
Kaur (D4SC05205F/cit25/1) 2020; 263
Gu (D4SC05205F/cit101/1) 2019; 13
Jiang (D4SC05205F/cit82/1) 2013; 4
References_xml – issn: 2018
  end-page: 302
  publication-title: Freshwater Microplastics: Emerging Environmental Contaminants?
  doi: Wagner Lambert
– volume-title: Annual production of plastics worldwide from 1950 to 2022
  doi: Statista
– ident: D4SC05205F/cit2/1
– volume: 132
  start-page: 15627
  year: 2020
  ident: D4SC05205F/cit24/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201915766
– volume: 455
  start-page: 140405
  year: 2022
  ident: D4SC05205F/cit39/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140405
– volume: 10
  start-page: 1
  year: 2023
  ident: D4SC05205F/cit103/1
  publication-title: Adv. Sci.
– volume: 9
  start-page: 1
  year: 2022
  ident: D4SC05205F/cit14/1
  publication-title: Adv. Sci.
– volume: 1
  start-page: 744
  year: 2023
  ident: D4SC05205F/cit124/1
  publication-title: ACS Appl. Eng. Mater.
  doi: 10.1021/acsaenm.2c00174
– volume: 44
  start-page: 30127
  year: 2019
  ident: D4SC05205F/cit86/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.09.167
– volume: 10
  start-page: 1
  year: 2019
  ident: D4SC05205F/cit3/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 8
  start-page: eadd5598
  year: 2022
  ident: D4SC05205F/cit33/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.add5598
– volume: 309
  start-page: 136682
  year: 2022
  ident: D4SC05205F/cit42/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.136682
– volume: 14
  start-page: 4510
  year: 2022
  ident: D4SC05205F/cit113/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c21284
– volume: 20
  start-page: 15660
  year: 2014
  ident: D4SC05205F/cit92/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201404093
– volume: 40
  start-page: 10542
  year: 2015
  ident: D4SC05205F/cit80/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.06.109
– volume: 9
  start-page: 1
  year: 2018
  ident: D4SC05205F/cit32/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02088-w
– volume: 29
  start-page: 1606221
  year: 2017
  ident: D4SC05205F/cit46/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606221
– volume: 10
  start-page: 10
  year: 2016
  ident: D4SC05205F/cit77/1
  publication-title: Sustainable Mater. Technol.
  doi: 10.1016/j.susmat.2016.10.001
– volume: 42
  start-page: 1921
  year: 2018
  ident: D4SC05205F/cit73/1
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ03851H
– volume: 532
  start-page: 435
  year: 2016
  ident: D4SC05205F/cit76/1
  publication-title: Nature
  doi: 10.1038/532435a
– start-page: 302
  volume-title: Freshwater Microplastics: Emerging Environmental Contaminants?
  year: 2018
  ident: D4SC05205F/cit17/1
  doi: 10.1007/978-3-319-61615-5
– volume: 417
  start-page: 125992
  year: 2021
  ident: D4SC05205F/cit26/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125992
– volume: 32
  start-page: 1
  year: 2020
  ident: D4SC05205F/cit97/1
  publication-title: Adv. Mater.
– volume: 649
  start-page: 308
  year: 2019
  ident: D4SC05205F/cit8/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.08.353
– volume: 650
  start-page: 671
  year: 2019
  ident: D4SC05205F/cit38/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.049
– volume: 276
  start-page: 6
  year: 2019
  ident: D4SC05205F/cit108/1
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2019.04.021
– volume: 132
  start-page: 8701
  year: 2020
  ident: D4SC05205F/cit65/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201915988
– volume: 4
  start-page: 1107
  year: 2024
  ident: D4SC05205F/cit18/1
  publication-title: Nat. Catal.
– volume: 21
  start-page: 95
  year: 2009
  ident: D4SC05205F/cit95/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801753
– volume: 15
  start-page: 393
  year: 2021
  ident: D4SC05205F/cit71/1
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00769-z
– volume: 61
  start-page: e202117528
  year: 2022
  ident: D4SC05205F/cit45/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202117528
– volume: 15
  start-page: 18114
  year: 2023
  ident: D4SC05205F/cit110/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c01897
– volume: 7
  start-page: 463
  year: 2021
  ident: D4SC05205F/cit47/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.11.019
– volume: 141
  start-page: 111470
  year: 2019
  ident: D4SC05205F/cit120/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111470
– volume: 7
  start-page: 1
  year: 2021
  ident: D4SC05205F/cit23/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.12.021
– volume: 13
  start-page: 1
  year: 2022
  ident: D4SC05205F/cit70/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31163-0
– volume: 715
  start-page: 136924
  year: 2020
  ident: D4SC05205F/cit15/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136924
– volume: 590
  start-page: 410
  year: 2021
  ident: D4SC05205F/cit98/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03251-6
– volume: 437
  start-page: 129361
  year: 2022
  ident: D4SC05205F/cit13/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.129361
– volume: 6
  start-page: 1902020
  year: 2019
  ident: D4SC05205F/cit49/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902020
– volume: 44
  start-page: 3894
  year: 2005
  ident: D4SC05205F/cit68/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0488187
– volume: 319
  start-page: 121940
  year: 2022
  ident: D4SC05205F/cit48/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121940
– volume: 206
  start-page: 110648
  year: 2022
  ident: D4SC05205F/cit116/1
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2022.110648
– volume: 431
  start-page: 133341
  year: 2022
  ident: D4SC05205F/cit87/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133341
– volume: 309
  start-page: 123003
  year: 2022
  ident: D4SC05205F/cit114/1
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2022.123003
– volume: 455
  start-page: 140390
  year: 2023
  ident: D4SC05205F/cit41/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140390
– volume: 136
  start-page: 6171
  year: 2014
  ident: D4SC05205F/cit105/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500671h
– volume: 541
  start-page: 231685
  year: 2022
  ident: D4SC05205F/cit89/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231685
– volume: 36
  start-page: 3074
  year: 2017
  ident: D4SC05205F/cit12/1
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.3881
– volume: 41
  start-page: 18141
  year: 2016
  ident: D4SC05205F/cit79/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.08.040
– volume: 97
  start-page: 1101
  year: 2020
  ident: D4SC05205F/cit34/1
  publication-title: J. Chem. Educ.
  doi: 10.1021/acs.jchemed.9b00337
– volume: 22
  start-page: 4082
  year: 2020
  ident: D4SC05205F/cit51/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC00353K
– volume: 147
  start-page: 240
  year: 2017
  ident: D4SC05205F/cit56/1
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-016-1897-0
– volume: 4
  start-page: 539
  year: 2021
  ident: D4SC05205F/cit61/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00648-4
– volume: 46
  start-page: 23326
  year: 2022
  ident: D4SC05205F/cit91/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.8630
– volume: 24
  start-page: 2189890
  year: 2023
  ident: D4SC05205F/cit37/1
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2023.2189890
– volume: 288
  start-page: 326
  year: 2003
  ident: D4SC05205F/cit53/1
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.200390034
– volume: 430
  start-page: 128431
  year: 2022
  ident: D4SC05205F/cit11/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.128431
– volume: 5
  start-page: 109
  year: 2021
  ident: D4SC05205F/cit99/1
  publication-title: Nat. Rev. Chem
  doi: 10.1038/s41570-020-00235-4
– volume: 858
  start-page: 160108
  year: 2023
  ident: D4SC05205F/cit66/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.160108
– volume: 478
  start-page: 214986
  year: 2023
  ident: D4SC05205F/cit52/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214986
– volume: 278
  start-page: 119295
  year: 2020
  ident: D4SC05205F/cit90/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119295
– volume: 4
  start-page: 3695
  year: 2016
  ident: D4SC05205F/cit122/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB00276E
– volume: 16
  start-page: 289
  year: 2017
  ident: D4SC05205F/cit29/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4805
– volume: 26
  start-page: 695
  year: 1998
  ident: D4SC05205F/cit44/1
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.19980810320
– volume: 55
  start-page: 444
  year: 2020
  ident: D4SC05205F/cit74/1
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2019.1577266
– volume: 2194
  start-page: 012005
  year: 2022
  ident: D4SC05205F/cit75/1
  publication-title: J. Phys.: Conf. Ser.
– volume: 290
  start-page: 109674
  year: 2019
  ident: D4SC05205F/cit81/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2019.109674
– volume: 9
  start-page: 3259
  year: 2022
  ident: D4SC05205F/cit112/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI00682K
– volume: 59
  start-page: 15497
  year: 2020
  ident: D4SC05205F/cit19/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201915766
– volume: 310
  start-page: 121300
  year: 2022
  ident: D4SC05205F/cit63/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121300
– volume: 407
  start-page: 124833
  year: 2021
  ident: D4SC05205F/cit10/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124833
– volume: 65
  start-page: 295
  year: 2015
  ident: D4SC05205F/cit119/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.10.010
– volume: 263
  start-page: 121492
  year: 2020
  ident: D4SC05205F/cit25/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.121492
– volume: 10
  start-page: 10020070
  year: 2022
  ident: D4SC05205F/cit123/1
  publication-title: Toxics
– volume: 8
  start-page: 14644
  year: 2020
  ident: D4SC05205F/cit125/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04891G
– volume: 1394
  start-page: 1
  year: 2021
  ident: D4SC05205F/cit59/1
  publication-title: ACS Symp. Ser.
  doi: 10.1021/bk-2021-1394.ch001
– volume: 3
  start-page: 25
  year: 2017
  ident: D4SC05205F/cit5/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700782
– volume: 10
  start-page: 924
  year: 2015
  ident: D4SC05205F/cit100/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.251
– volume: 44
  start-page: 245
  year: 2021
  ident: D4SC05205F/cit54/1
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-021-02537-9
– volume: 58
  start-page: 17010
  year: 2019
  ident: D4SC05205F/cit78/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b02205
– volume: 333
  start-page: 125816
  year: 2024
  ident: D4SC05205F/cit43/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.125816
– volume: 750
  start-page: 141514
  year: 2021
  ident: D4SC05205F/cit4/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141514
– volume: 23
  start-page: 511
  year: 2021
  ident: D4SC05205F/cit67/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC03536J
– volume: 47
  start-page: 459
  year: 2014
  ident: D4SC05205F/cit107/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400151n
– volume: 13
  start-page: 33546
  year: 2021
  ident: D4SC05205F/cit72/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c09202
– volume: 324
  start-page: 128627
  year: 2020
  ident: D4SC05205F/cit111/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2020.128627
– volume: 140
  start-page: 7716
  year: 2018
  ident: D4SC05205F/cit96/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04404
– volume: 10
  start-page: 361
  year: 2021
  ident: D4SC05205F/cit60/1
  publication-title: Green Process. Synth.
  doi: 10.1515/gps-2021-0036
– volume: 6
  start-page: 337
  year: 2020
  ident: D4SC05205F/cit35/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.10.012
– volume: 43
  start-page: 17867
  year: 2018
  ident: D4SC05205F/cit88/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.08.007
– volume: 41
  start-page: 1900333
  year: 2020
  ident: D4SC05205F/cit69/1
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201900333
– volume: 5
  start-page: 8477
  year: 2017
  ident: D4SC05205F/cit31/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00900C
– volume: 7
  start-page: 44507
  year: 2022
  ident: D4SC05205F/cit57/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c05310
– volume: 14
  start-page: 4216
  year: 2022
  ident: D4SC05205F/cit104/1
  publication-title: Nanoscale
  doi: 10.1039/D1NR08120A
– volume: 32
  start-page: 748
  year: 2021
  ident: D4SC05205F/cit102/1
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5127
– volume: 70
  start-page: 104499
  year: 2020
  ident: D4SC05205F/cit50/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104499
– volume: 4
  start-page: 2751
  year: 2013
  ident: D4SC05205F/cit82/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3751
– volume: 38
  start-page: 186
  year: 2022
  ident: D4SC05205F/cit40/1
  publication-title: Chem. Res. Chin. Univ.
  doi: 10.1007/s40242-021-1317-x
– volume: 429
  start-page: 132351
  year: 2022
  ident: D4SC05205F/cit6/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132351
– volume: 7
  start-page: 35180
  year: 2022
  ident: D4SC05205F/cit118/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c04264
– volume: 14
  start-page: 1
  year: 2021
  ident: D4SC05205F/cit94/1
  publication-title: Energies
– volume: 135
  start-page: 267
  year: 2021
  ident: D4SC05205F/cit62/1
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2021.09.009
– volume: 28
  start-page: 9504
  year: 2016
  ident: D4SC05205F/cit84/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603074
– volume: 6
  start-page: 605
  year: 2021
  ident: D4SC05205F/cit36/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00291-2
– volume: 13
  start-page: 525
  year: 2019
  ident: D4SC05205F/cit101/1
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0437-z
– volume: 4
  start-page: 1107
  year: 2024
  ident: D4SC05205F/cit16/1
  publication-title: ACS EST Water
  doi: 10.1021/acsestwater.3c00386
– volume: 13
  start-page: 8344
  year: 2021
  ident: D4SC05205F/cit58/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c20437
– volume: 13
  start-page: 5360
  year: 2022
  ident: D4SC05205F/cit21/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32903-y
– volume: 277
  start-page: 119655
  year: 2021
  ident: D4SC05205F/cit126/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119655
– volume: 371
  start-page: 672
  year: 2021
  ident: D4SC05205F/cit1/1
  publication-title: Science
  doi: 10.1126/science.abe5041
– volume: 253
  start-page: 123942
  year: 2023
  ident: D4SC05205F/cit115/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123942
– volume: 631–632
  start-page: 449
  year: 2018
  ident: D4SC05205F/cit9/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.051
– volume: 198
  start-page: 110016
  year: 2022
  ident: D4SC05205F/cit109/1
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2021.110016
– volume: 358
  start-page: 870
  year: 2017
  ident: D4SC05205F/cit22/1
  publication-title: Science
  doi: 10.1126/science.aaq0324
– volume: 300
  start-page: 126963
  year: 2021
  ident: D4SC05205F/cit83/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2021.126963
– volume: 51
  start-page: 16266
  year: 2022
  ident: D4SC05205F/cit121/1
  publication-title: Dalton Trans.
  doi: 10.1039/D2DT02406C
– volume: 14
  start-page: 1
  year: 2023
  ident: D4SC05205F/cit106/1
  publication-title: Nat. Commun.
– volume: 8
  start-page: 250
  year: 2021
  ident: D4SC05205F/cit64/1
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.0c01002
– volume: 294
  start-page: 133672
  year: 2022
  ident: D4SC05205F/cit30/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.133672
– volume: 136
  start-page: 109182
  year: 2022
  ident: D4SC05205F/cit93/1
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2021.109182
– volume: 9
  start-page: 6541
  year: 2021
  ident: D4SC05205F/cit55/1
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c08012
– start-page: 1
  year: 2022
  ident: D4SC05205F/cit20/1
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 55
  start-page: 7319
  year: 2019
  ident: D4SC05205F/cit27/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02861G
– start-page: 1
  year: 2024
  ident: D4SC05205F/cit85/1
  publication-title: Aggregate
– volume: 7
  start-page: 35180
  year: 2022
  ident: D4SC05205F/cit28/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c04264
– volume: 58
  start-page: 7690
  year: 2023
  ident: D4SC05205F/cit117/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-023-08468-6
– volume: 56
  start-page: 12483
  year: 2022
  ident: D4SC05205F/cit7/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c03980
SSID ssj0000331527
Score 2.5174935
SecondaryResourceType review_article
Snippet Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17781
SubjectTerms Adsorption
Biochemical fuel cells
Chemical bonds
Chemistry
Glycolysis
Hydrophobicity
Interdisciplinary studies
Ligands
Metal-organic frameworks
Microorganisms
Particulate composites
Photocatalysis
Plastic pollution
Polymers
Scintillation counters
Threat evaluation
Van der Waals forces
Title When microplastics/plastics meet metal-organic frameworks: turning threats into opportunities
URI https://www.ncbi.nlm.nih.gov/pubmed/39421205
https://www.proquest.com/docview/3124395087
https://www.proquest.com/docview/3117999100
https://pubmed.ncbi.nlm.nih.gov/PMC11474910
Volume 15
WOSCitedRecordID wos001334414600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: RRC
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://pubs.rsc.org/
  providerName: Royal Society of Chemistry
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UBL34ftTHEtGLh2K3aZvGm6wuHkTEF3sr2zzYBe0u265n_4P_0F_iJH3IooKUlkKmbZpJMt8kwzcAJ0KlEu1G5KaSK3RQ4sBNA_R50NigfQ05De3SwPMNu72Nez1-Nwcnf-zgU352GTx0TLBG2DUTLQtN172_7zQLKR6lVWpW3wvaboSiNQ3pzNOzhucHmvwZFDk_qXOAWFvTXf1fLddgpcKS5KJU_jrMqWwDljp1CrdNSHCqzciribkbI0o2jMxn9Q15VarAC4Lvz_ePMrmTILqO1crPCRojs2hCioEBljkZZsWIjMYGsE8zS8S6BU_dq8fOtVtlVHAF2p3CFZRKGgrDIcfwREeaCVShkJHCg_tCaZn6HpUcJ8k0ZrFupzpVOvU5jk6h6TYsZKNM7QKxvD0iCrTEEe31Rd-PNfO11xbCkyqSDpzWzZ2Iim7cZL14Sey2N-XJd5M5cNzIjkuSjV-lDmqtJdVAyxOK-ISaTLbMgaOmGJvZ7Hv0MzWaGhlDe4e4yHNgp1Ry8xnKzZa4FzoQz6i_ETD027Ml2XBgabjRk2QBvtWBbewpzQMyyIWtsN7712_tw7KPQKmMKzyAhWIyVYewKN6KYT5pwTzrxS27UtCy_f4L8sD7rA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+microplastics%2Fplastics+meet+metal%E2%80%93organic+frameworks%3A+turning+threats+into+opportunities&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Wu%2C+Pengfei&rft.au=Guo%2C+Mengting&rft.au=Zhang%2C+Ran-Wei&rft.au=Huang%2C+Qing&rft.date=2024-10-08&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=15&rft.issue=43&rft.spage=17781&rft.epage=17798&rft_id=info:doi/10.1039%2FD4SC05205F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4SC05205F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon