When microplastics/plastics meet metal-organic frameworks: turning threats into opportunities
Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal-organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation,...
Saved in:
| Published in: | Chemical science (Cambridge) Vol. 15; no. 43; pp. 17781 - 17798 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Royal Society of Chemistry
08.10.2024
The Royal Society of Chemistry |
| Subjects: | |
| ISSN: | 2041-6520, 2041-6539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal-organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials
via
the hydrophobic interaction, electrical attraction, π-π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C-O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities (
e.g.
, as ligands to prepare MOF or MOF@plastic materials for further applications).
The study discussed how MOFs treat microplastics, how to make plastic-based MOFs, and how MOF@plastic composites can be used. It aids in understanding how to convert plastic/microplastic concerns into opportunities for high-valued products. |
|---|---|
| AbstractList | Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal–organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials
via
the hydrophobic interaction, electrical attraction, π–π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C–O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities (
e.g.
, as ligands to prepare MOF or MOF@plastic materials for further applications). Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal-organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials via the hydrophobic interaction, electrical attraction, π-π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C-O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities ( e.g. , as ligands to prepare MOF or MOF@plastic materials for further applications). The study discussed how MOFs treat microplastics, how to make plastic-based MOFs, and how MOF@plastic composites can be used. It aids in understanding how to convert plastic/microplastic concerns into opportunities for high-valued products. Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal–organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials via the hydrophobic interaction, electrical attraction, π–π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C–O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities (e.g., as ligands to prepare MOF or MOF@plastic materials for further applications). The study discussed how MOFs treat microplastics, how to make plastic-based MOFs, and how MOF@plastic composites can be used. It aids in understanding how to convert plastic/microplastic concerns into opportunities for high-valued products. Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal-organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials via the hydrophobic interaction, electrical attraction, π-π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C-O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities (e.g., as ligands to prepare MOF or MOF@plastic materials for further applications).Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal-organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials via the hydrophobic interaction, electrical attraction, π-π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C-O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities (e.g., as ligands to prepare MOF or MOF@plastic materials for further applications). Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal–organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials via the hydrophobic interaction, electrical attraction, π–π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C–O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities (e.g., as ligands to prepare MOF or MOF@plastic materials for further applications). Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal-organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials the hydrophobic interaction, electrical attraction, π-π stacking, and van der Waals forces. Meanwhile, certain MOFs have successfully converted various types of plastics into high-valued small molecules through thermocatalysis and photocatalysis. In thermocatalysis, the primary process should be C-O bond cleavage, whereas in photocatalysis it ought to be the generation of reactive oxygen species (ROS). Moreover, the construction of novel MOFs using waste MPs/plastics as the ligands was mostly accomplished through three dominant ways, including glycolysis, hydrolysis and methanolysis. Once successfully composited, the MOF@plastic materials illustrated tremendous promise for interdisciplinary research in multifunctional applications, including sewage treatment, gas adsorption/separation, and the preparation of microbial fuel cells, plastic scintillators and other sensors. The review explicated the relationships between MPs/plastics and MOF materials, as well as the challenges and perspectives for their development. It can provide a deeper understanding of how MOFs remove/degrade MP/plastic particles, how MPs/plastics are recycled to prepare MOFs, and how to build multifunctional MOF@plastic composites. Overall, this analysis is anticipated to outline future prospects for turning the threats (MPs/plastics contamination) into opportunities ( , as ligands to prepare MOF or MOF@plastic materials for further applications). |
| Author | Guo, Mengting Huang, Qing Wang, Guibin Lan, Ya-Qian Zhang, Ran-Wei Wu, Pengfei |
| AuthorAffiliation | Nanjing Forestry University South China Normal University Co-Innovation Center for Sustainable Forestry in Southern China College of Materials Science and Engineering State Key Laboratory of Tree Genetics and Breeding Co-Innovation Center of Efficient Processing and Utilization of Forest Resources School of Chemistry |
| AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory of Tree Genetics and Breeding – sequence: 0 name: Co-Innovation Center of Efficient Processing and Utilization of Forest Resources – sequence: 0 name: School of Chemistry – sequence: 0 name: Co-Innovation Center for Sustainable Forestry in Southern China – sequence: 0 name: South China Normal University – sequence: 0 name: Nanjing Forestry University – sequence: 0 name: College of Materials Science and Engineering |
| Author_xml | – sequence: 1 givenname: Pengfei surname: Wu fullname: Wu, Pengfei – sequence: 2 givenname: Mengting surname: Guo fullname: Guo, Mengting – sequence: 3 givenname: Ran-Wei surname: Zhang fullname: Zhang, Ran-Wei – sequence: 4 givenname: Qing surname: Huang fullname: Huang, Qing – sequence: 5 givenname: Guibin surname: Wang fullname: Wang, Guibin – sequence: 6 givenname: Ya-Qian surname: Lan fullname: Lan, Ya-Qian |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39421205$$D View this record in MEDLINE/PubMed |
| BookMark | eNptks9rFDEUx4NUbF178a4MeCnCtPk1M5teRFarQqEHW3qSkMm87KbOJGOSqfjfm3W7W1uakORBPt_Hy_flJdpz3gFCrwk-JpiJk45HjSuKK_MMHVDMSVlXTOztYor30WGMNzgPxkhFmxdonwlOSdYcoB_XK3DFYHXwY69isjqebINiAEh5S6ovfVgqZ3Vhghrgtw8_42mRpuCsWxZpFUClWFiXfOHH0Yc0OZssxFfouVF9hMO7c4auzj5fLr6W5xdfvi0-npeaU5FKzVjHKk15TZq8oGWN1lrproY8BdVgupZi1ol5U7fzZm5Ia1owLRUY19qwGfqwyTtO7QCdBpeC6uUY7KDCH-mVlQ9vnF3Jpb-VhPCGi2zkDB3dZQj-1wQxycFGDX2vHPgpSkZII0Qm1-i7R-iNz07k92WKciYqPG8y9fb_kna1bK3PAN4A2foYAxipbVLJ-nWFtpcEy3WD5Sf-ffGvwWdZ8v6RZJv1SfjNBg5R77j738L-Aq14se8 |
| CitedBy_id | crossref_primary_10_1007_s11356_025_36153_5 crossref_primary_10_1016_j_colsurfa_2025_137476 crossref_primary_10_1016_j_jpowsour_2025_237156 crossref_primary_10_1016_j_jece_2025_119276 crossref_primary_10_1016_j_ccr_2025_216669 crossref_primary_10_1016_j_joei_2025_102239 crossref_primary_10_1002_adom_202500856 crossref_primary_10_1016_j_cej_2025_163895 crossref_primary_10_1016_j_progpolymsci_2025_101958 crossref_primary_10_1039_D4TA07876D crossref_primary_10_1016_j_jhazmat_2025_139040 crossref_primary_10_1039_D5MH00512D |
| Cites_doi | 10.1002/ange.201915766 10.1016/j.cej.2022.140405 10.1021/acsaenm.2c00174 10.1016/j.ijhydene.2019.09.167 10.1038/s41467-018-07882-8 10.1126/sciadv.add5598 10.1016/j.chemosphere.2022.136682 10.1021/acsami.1c21284 10.1002/chem.201404093 10.1016/j.ijhydene.2015.06.109 10.1038/s41467-017-02088-w 10.1002/adma.201606221 10.1016/j.susmat.2016.10.001 10.1039/C7NJ03851H 10.1038/532435a 10.1007/978-3-319-61615-5 10.1016/j.jhazmat.2021.125992 10.1016/j.scitotenv.2018.08.353 10.1016/j.scitotenv.2018.09.049 10.1016/j.jssc.2019.04.021 10.1002/ange.201915988 10.1002/adma.200801753 10.1038/s41566-021-00769-z 10.1002/anie.202117528 10.1021/acsami.3c01897 10.1016/j.chempr.2020.11.019 10.1016/j.bios.2019.111470 10.1016/j.chempr.2020.12.021 10.1038/s41467-022-31163-0 10.1016/j.scitotenv.2020.136924 10.1038/s41586-021-03251-6 10.1016/j.jhazmat.2022.129361 10.1002/advs.201902020 10.1021/ie0488187 10.1016/j.apcatb.2022.121940 10.1016/j.dyepig.2022.110648 10.1016/j.cej.2021.133341 10.1016/j.jssc.2022.123003 10.1016/j.cej.2022.140390 10.1021/ja500671h 10.1016/j.jpowsour.2022.231685 10.1002/etc.3881 10.1016/j.ijhydene.2016.08.040 10.1021/acs.jchemed.9b00337 10.1039/D0GC00353K 10.1007/s10562-016-1897-0 10.1038/s41929-021-00648-4 10.1002/er.8630 10.1080/14686996.2023.2189890 10.1002/mame.200390034 10.1016/j.jhazmat.2022.128431 10.1038/s41570-020-00235-4 10.1016/j.scitotenv.2022.160108 10.1016/j.ccr.2022.214986 10.1016/j.apcatb.2020.119295 10.1039/C6TB00276E 10.1038/nmat4805 10.1002/hlca.19980810320 10.1080/01496395.2019.1577266 10.1016/j.micromeso.2019.109674 10.1039/D2QI00682K 10.1002/anie.201915766 10.1016/j.apcatb.2022.121300 10.1016/j.jhazmat.2020.124833 10.1016/j.bios.2014.10.010 10.1016/j.jclepro.2020.121492 10.1039/D0TA04891G 10.1021/bk-2021-1394.ch001 10.1126/sciadv.1700782 10.1038/nnano.2015.251 10.1007/s12034-021-02537-9 10.1021/acs.iecr.9b02205 10.1016/j.seppur.2023.125816 10.1016/j.scitotenv.2020.141514 10.1039/D0GC03536J 10.1021/ar400151n 10.1021/acsami.1c09202 10.1016/j.snb.2020.128627 10.1021/jacs.8b04404 10.1515/gps-2021-0036 10.1016/j.chempr.2019.10.012 10.1016/j.ijhydene.2018.08.007 10.1002/marc.201900333 10.1039/C7TA00900C 10.1021/acsomega.2c05310 10.1039/D1NR08120A 10.1002/pat.5127 10.1016/j.nanoen.2020.104499 10.1038/ncomms3751 10.1007/s40242-021-1317-x 10.1016/j.cej.2021.132351 10.1021/acsomega.2c04264 10.1016/j.wasman.2021.09.009 10.1002/adma.201603074 10.1038/s41578-021-00291-2 10.1038/s41566-019-0437-z 10.1021/acsestwater.3c00386 10.1021/acsami.0c20437 10.1038/s41467-022-32903-y 10.1016/j.seppur.2021.119655 10.1126/science.abe5041 10.1016/j.talanta.2022.123942 10.1016/j.scitotenv.2018.03.051 10.1016/j.dyepig.2021.110016 10.1126/science.aaq0324 10.1016/j.jclepro.2021.126963 10.1039/D2DT02406C 10.1021/acs.estlett.0c01002 10.1016/j.chemosphere.2022.133672 10.1016/j.inoche.2021.109182 10.1021/acssuschemeng.0c08012 10.1039/C9CC02861G 10.1007/s10853-023-08468-6 10.1021/acs.est.2c03980 |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2024 This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2024 – notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| DOI | 10.1039/d4sc05205f |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2041-6539 |
| EndPage | 17798 |
| ExternalDocumentID | PMC11474910 39421205 10_1039_D4SC05205F d4sc05205f |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: ; grantid: 22106130; 22101089; 22471126; 22225109 |
| GroupedDBID | -JG 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV ABEMK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ AAYXX ABIQK AFPKN AGMRB CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| ID | FETCH-LOGICAL-c429t-c33d35c24617461eb37cccacd6e6e692cefdb203d9876b878f1bfbefb29006cf3 |
| IEDL.DBID | RRC |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001334414600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-6520 |
| IngestDate | Tue Nov 04 02:04:56 EST 2025 Thu Oct 02 11:21:54 EDT 2025 Sat Jul 26 00:01:55 EDT 2025 Mon Jul 21 06:02:20 EDT 2025 Sat Nov 29 02:48:20 EST 2025 Tue Nov 18 22:22:59 EST 2025 Tue Dec 17 20:57:36 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 43 |
| Language | English |
| License | This journal is © The Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-c33d35c24617461eb37cccacd6e6e692cefdb203d9876b878f1bfbefb29006cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to the work. |
| ORCID | 0009-0007-9850-9989 |
| OpenAccessLink | http://dx.doi.org/10.1039/d4sc05205f |
| PMID | 39421205 |
| PQID | 3124395087 |
| PQPubID | 2047492 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1039_D4SC05205F proquest_miscellaneous_3117999100 pubmed_primary_39421205 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11474910 rsc_primary_d4sc05205f crossref_primary_10_1039_D4SC05205F proquest_journals_3124395087 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-08 |
| PublicationDateYYYYMMDD | 2024-10-08 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | Chemical science (Cambridge) |
| PublicationTitleAlternate | Chem Sci |
| PublicationYear | 2024 |
| Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
| References | Bacha (D4SC05205F/cit66/1) 2023; 858 Sarno (D4SC05205F/cit64/1) 2021; 8 Wan (D4SC05205F/cit123/1) 2022; 10 Chen (D4SC05205F/cit14/1) 2022; 9 Pander (D4SC05205F/cit58/1) 2021; 13 Suo (D4SC05205F/cit56/1) 2017; 147 Wu (D4SC05205F/cit16/1) 2024; 4 Hu (D4SC05205F/cit75/1) 2022; 2194 Jie (D4SC05205F/cit18/1) 2024; 4 Jiao (D4SC05205F/cit24/1) 2020; 132 Koros (D4SC05205F/cit29/1) 2017; 16 Mukherjee (D4SC05205F/cit91/1) 2022; 46 Guan (D4SC05205F/cit110/1) 2023; 15 Song (D4SC05205F/cit121/1) 2022; 51 Vethaak (D4SC05205F/cit1/1) 2021; 371 Wu (D4SC05205F/cit45/1) 2022; 61 Min (D4SC05205F/cit94/1) 2021; 14 Lee (D4SC05205F/cit11/1) 2022; 430 Zhao (D4SC05205F/cit88/1) 2018; 43 Slater (D4SC05205F/cit27/1) 2019; 55 Wu (D4SC05205F/cit38/1) 2019; 650 Mohana (D4SC05205F/cit42/1) 2022; 309 Geyer (D4SC05205F/cit5/1) 2017; 3 Gazi (D4SC05205F/cit49/1) 2019; 6 Zhang (D4SC05205F/cit63/1) 2022; 310 Yusuf (D4SC05205F/cit57/1) 2022; 7 Zhu (D4SC05205F/cit93/1) 2022; 136 Qu (D4SC05205F/cit114/1) 2022; 309 Ellis (D4SC05205F/cit61/1) 2021; 4 Bertrand (D4SC05205F/cit102/1) 2021; 32 Wang (D4SC05205F/cit118/1) 2022; 7 Dyosiba (D4SC05205F/cit77/1) 2016; 10 MacKenzie (D4SC05205F/cit99/1) 2021; 5 Pham (D4SC05205F/cit67/1) 2021; 23 Zhong (D4SC05205F/cit86/1) 2019; 44 Wang (D4SC05205F/cit32/1) 2018; 9 Gray (D4SC05205F/cit12/1) 2017; 36 Perego (D4SC05205F/cit71/1) 2021; 15 Liu (D4SC05205F/cit59/1) 2021; 1394 Zhou (D4SC05205F/cit81/1) 2019; 290 Huang (D4SC05205F/cit85/1) 2024 Bertrand (D4SC05205F/cit92/1) 2014; 20 Xing (D4SC05205F/cit90/1) 2020; 278 Liu (D4SC05205F/cit50/1) 2020; 70 Ou (D4SC05205F/cit98/1) 2021; 590 Peterson (D4SC05205F/cit36/1) 2021; 6 Genta (D4SC05205F/cit68/1) 2005; 44 Schmidt (D4SC05205F/cit69/1) 2020; 41 Wang (D4SC05205F/cit105/1) 2014; 136 Dyosiba (D4SC05205F/cit78/1) 2019; 58 Singh (D4SC05205F/cit73/1) 2018; 42 Ren (D4SC05205F/cit104/1) 2022; 14 Biamonte (D4SC05205F/cit44/1) 1998; 26 Lin (D4SC05205F/cit35/1) 2020; 6 Isobe (D4SC05205F/cit3/1) 2019; 10 Vanapalli (D4SC05205F/cit4/1) 2021; 750 Jia (D4SC05205F/cit72/1) 2021; 13 Liu (D4SC05205F/cit117/1) 2023; 58 Chen (D4SC05205F/cit23/1) 2021; 7 Biermann (D4SC05205F/cit60/1) 2021; 10 He (D4SC05205F/cit20/1) 2022 Zeng (D4SC05205F/cit97/1) 2020; 32 Wang (D4SC05205F/cit119/1) 2015; 65 Yang (D4SC05205F/cit55/1) 2021; 9 Doan (D4SC05205F/cit74/1) 2020; 55 Roshanravan (D4SC05205F/cit83/1) 2021; 300 Haris (D4SC05205F/cit41/1) 2023; 455 Qin (D4SC05205F/cit48/1) 2022; 319 Wang (D4SC05205F/cit28/1) 2022; 7 Jin (D4SC05205F/cit8/1) 2019; 649 You (D4SC05205F/cit40/1) 2022; 38 El-Sayed (D4SC05205F/cit51/1) 2020; 22 Lu (D4SC05205F/cit9/1) 2018; 631–632 Kalimuthu (D4SC05205F/cit30/1) 2022; 294 Kaur (D4SC05205F/cit26/1) 2021; 417 Cao (D4SC05205F/cit111/1) 2020; 324 Garcia (D4SC05205F/cit22/1) 2017; 358 Chen (D4SC05205F/cit47/1) 2021; 7 Zhou (D4SC05205F/cit100/1) 2015; 10 Lu (D4SC05205F/cit106/1) 2023; 14 Wu (D4SC05205F/cit13/1) 2022; 437 Liang (D4SC05205F/cit108/1) 2019; 276 Chen (D4SC05205F/cit120/1) 2019; 141 Gutiérrez-Serpa (D4SC05205F/cit113/1) 2022; 14 Goje (D4SC05205F/cit53/1) 2003; 288 Wu (D4SC05205F/cit6/1) 2022; 429 Zhu (D4SC05205F/cit65/1) 2020; 132 Dhillon (D4SC05205F/cit87/1) 2022; 431 Boukayouht (D4SC05205F/cit52/1) 2023; 478 Liang (D4SC05205F/cit115/1) 2023; 253 Guimaraes (D4SC05205F/cit10/1) 2021; 407 Pasanen (D4SC05205F/cit39/1) 2022; 455 Okoffo (D4SC05205F/cit15/1) 2020; 715 Yang (D4SC05205F/cit62/1) 2021; 135 Jiao (D4SC05205F/cit19/1) 2020; 59 Ren (D4SC05205F/cit96/1) 2018; 140 Mastropietro (D4SC05205F/cit37/1) 2023; 24 Zhang (D4SC05205F/cit103/1) 2023; 10 Huang (D4SC05205F/cit33/1) 2022; 8 Katuri (D4SC05205F/cit84/1) 2016; 28 Perego (D4SC05205F/cit70/1) 2022; 13 Wang (D4SC05205F/cit112/1) 2022; 9 Wang (D4SC05205F/cit122/1) 2016; 4 Sholl (D4SC05205F/cit76/1) 2016; 532 Ma (D4SC05205F/cit116/1) 2022; 206 Ren (D4SC05205F/cit80/1) 2015; 40 Cabrera-unguia (D4SC05205F/cit54/1) 2021; 44 Statista (D4SC05205F/cit2/1) Zhang (D4SC05205F/cit21/1) 2022; 13 Qin (D4SC05205F/cit89/1) 2022; 541 Wagner (D4SC05205F/cit17/1) 2018 Ren (D4SC05205F/cit79/1) 2016; 41 Sindoro (D4SC05205F/cit107/1) 2014; 47 Zhou (D4SC05205F/cit109/1) 2022; 198 Lin (D4SC05205F/cit7/1) 2022; 56 Modak (D4SC05205F/cit124/1) 2023; 1 Pedrero (D4SC05205F/cit43/1) 2024; 333 Chen (D4SC05205F/cit46/1) 2017; 29 Doty (D4SC05205F/cit95/1) 2009; 21 Chen (D4SC05205F/cit125/1) 2020; 8 Huang (D4SC05205F/cit31/1) 2017; 5 Panda (D4SC05205F/cit34/1) 2020; 97 Gnanasekaran (D4SC05205F/cit126/1) 2021; 277 Kaur (D4SC05205F/cit25/1) 2020; 263 Gu (D4SC05205F/cit101/1) 2019; 13 Jiang (D4SC05205F/cit82/1) 2013; 4 |
| References_xml | – issn: 2018 end-page: 302 publication-title: Freshwater Microplastics: Emerging Environmental Contaminants? doi: Wagner Lambert – volume-title: Annual production of plastics worldwide from 1950 to 2022 doi: Statista – ident: D4SC05205F/cit2/1 – volume: 132 start-page: 15627 year: 2020 ident: D4SC05205F/cit24/1 publication-title: Angew. Chem. doi: 10.1002/ange.201915766 – volume: 455 start-page: 140405 year: 2022 ident: D4SC05205F/cit39/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140405 – volume: 10 start-page: 1 year: 2023 ident: D4SC05205F/cit103/1 publication-title: Adv. Sci. – volume: 9 start-page: 1 year: 2022 ident: D4SC05205F/cit14/1 publication-title: Adv. Sci. – volume: 1 start-page: 744 year: 2023 ident: D4SC05205F/cit124/1 publication-title: ACS Appl. Eng. Mater. doi: 10.1021/acsaenm.2c00174 – volume: 44 start-page: 30127 year: 2019 ident: D4SC05205F/cit86/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.09.167 – volume: 10 start-page: 1 year: 2019 ident: D4SC05205F/cit3/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 8 start-page: eadd5598 year: 2022 ident: D4SC05205F/cit33/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.add5598 – volume: 309 start-page: 136682 year: 2022 ident: D4SC05205F/cit42/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136682 – volume: 14 start-page: 4510 year: 2022 ident: D4SC05205F/cit113/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c21284 – volume: 20 start-page: 15660 year: 2014 ident: D4SC05205F/cit92/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.201404093 – volume: 40 start-page: 10542 year: 2015 ident: D4SC05205F/cit80/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.06.109 – volume: 9 start-page: 1 year: 2018 ident: D4SC05205F/cit32/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02088-w – volume: 29 start-page: 1606221 year: 2017 ident: D4SC05205F/cit46/1 publication-title: Adv. Mater. doi: 10.1002/adma.201606221 – volume: 10 start-page: 10 year: 2016 ident: D4SC05205F/cit77/1 publication-title: Sustainable Mater. Technol. doi: 10.1016/j.susmat.2016.10.001 – volume: 42 start-page: 1921 year: 2018 ident: D4SC05205F/cit73/1 publication-title: New J. Chem. doi: 10.1039/C7NJ03851H – volume: 532 start-page: 435 year: 2016 ident: D4SC05205F/cit76/1 publication-title: Nature doi: 10.1038/532435a – start-page: 302 volume-title: Freshwater Microplastics: Emerging Environmental Contaminants? year: 2018 ident: D4SC05205F/cit17/1 doi: 10.1007/978-3-319-61615-5 – volume: 417 start-page: 125992 year: 2021 ident: D4SC05205F/cit26/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125992 – volume: 32 start-page: 1 year: 2020 ident: D4SC05205F/cit97/1 publication-title: Adv. Mater. – volume: 649 start-page: 308 year: 2019 ident: D4SC05205F/cit8/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.353 – volume: 650 start-page: 671 year: 2019 ident: D4SC05205F/cit38/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.049 – volume: 276 start-page: 6 year: 2019 ident: D4SC05205F/cit108/1 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2019.04.021 – volume: 132 start-page: 8701 year: 2020 ident: D4SC05205F/cit65/1 publication-title: Angew. Chem. doi: 10.1002/ange.201915988 – volume: 4 start-page: 1107 year: 2024 ident: D4SC05205F/cit18/1 publication-title: Nat. Catal. – volume: 21 start-page: 95 year: 2009 ident: D4SC05205F/cit95/1 publication-title: Adv. Mater. doi: 10.1002/adma.200801753 – volume: 15 start-page: 393 year: 2021 ident: D4SC05205F/cit71/1 publication-title: Nat. Photonics doi: 10.1038/s41566-021-00769-z – volume: 61 start-page: e202117528 year: 2022 ident: D4SC05205F/cit45/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202117528 – volume: 15 start-page: 18114 year: 2023 ident: D4SC05205F/cit110/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c01897 – volume: 7 start-page: 463 year: 2021 ident: D4SC05205F/cit47/1 publication-title: Chem doi: 10.1016/j.chempr.2020.11.019 – volume: 141 start-page: 111470 year: 2019 ident: D4SC05205F/cit120/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111470 – volume: 7 start-page: 1 year: 2021 ident: D4SC05205F/cit23/1 publication-title: Chem doi: 10.1016/j.chempr.2020.12.021 – volume: 13 start-page: 1 year: 2022 ident: D4SC05205F/cit70/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31163-0 – volume: 715 start-page: 136924 year: 2020 ident: D4SC05205F/cit15/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136924 – volume: 590 start-page: 410 year: 2021 ident: D4SC05205F/cit98/1 publication-title: Nature doi: 10.1038/s41586-021-03251-6 – volume: 437 start-page: 129361 year: 2022 ident: D4SC05205F/cit13/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.129361 – volume: 6 start-page: 1902020 year: 2019 ident: D4SC05205F/cit49/1 publication-title: Adv. Sci. doi: 10.1002/advs.201902020 – volume: 44 start-page: 3894 year: 2005 ident: D4SC05205F/cit68/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0488187 – volume: 319 start-page: 121940 year: 2022 ident: D4SC05205F/cit48/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121940 – volume: 206 start-page: 110648 year: 2022 ident: D4SC05205F/cit116/1 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2022.110648 – volume: 431 start-page: 133341 year: 2022 ident: D4SC05205F/cit87/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133341 – volume: 309 start-page: 123003 year: 2022 ident: D4SC05205F/cit114/1 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2022.123003 – volume: 455 start-page: 140390 year: 2023 ident: D4SC05205F/cit41/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140390 – volume: 136 start-page: 6171 year: 2014 ident: D4SC05205F/cit105/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500671h – volume: 541 start-page: 231685 year: 2022 ident: D4SC05205F/cit89/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231685 – volume: 36 start-page: 3074 year: 2017 ident: D4SC05205F/cit12/1 publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.3881 – volume: 41 start-page: 18141 year: 2016 ident: D4SC05205F/cit79/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.08.040 – volume: 97 start-page: 1101 year: 2020 ident: D4SC05205F/cit34/1 publication-title: J. Chem. Educ. doi: 10.1021/acs.jchemed.9b00337 – volume: 22 start-page: 4082 year: 2020 ident: D4SC05205F/cit51/1 publication-title: Green Chem. doi: 10.1039/D0GC00353K – volume: 147 start-page: 240 year: 2017 ident: D4SC05205F/cit56/1 publication-title: Catal. Lett. doi: 10.1007/s10562-016-1897-0 – volume: 4 start-page: 539 year: 2021 ident: D4SC05205F/cit61/1 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00648-4 – volume: 46 start-page: 23326 year: 2022 ident: D4SC05205F/cit91/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.8630 – volume: 24 start-page: 2189890 year: 2023 ident: D4SC05205F/cit37/1 publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2023.2189890 – volume: 288 start-page: 326 year: 2003 ident: D4SC05205F/cit53/1 publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.200390034 – volume: 430 start-page: 128431 year: 2022 ident: D4SC05205F/cit11/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.128431 – volume: 5 start-page: 109 year: 2021 ident: D4SC05205F/cit99/1 publication-title: Nat. Rev. Chem doi: 10.1038/s41570-020-00235-4 – volume: 858 start-page: 160108 year: 2023 ident: D4SC05205F/cit66/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.160108 – volume: 478 start-page: 214986 year: 2023 ident: D4SC05205F/cit52/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214986 – volume: 278 start-page: 119295 year: 2020 ident: D4SC05205F/cit90/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119295 – volume: 4 start-page: 3695 year: 2016 ident: D4SC05205F/cit122/1 publication-title: J. Mater. Chem. B doi: 10.1039/C6TB00276E – volume: 16 start-page: 289 year: 2017 ident: D4SC05205F/cit29/1 publication-title: Nat. Mater. doi: 10.1038/nmat4805 – volume: 26 start-page: 695 year: 1998 ident: D4SC05205F/cit44/1 publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19980810320 – volume: 55 start-page: 444 year: 2020 ident: D4SC05205F/cit74/1 publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2019.1577266 – volume: 2194 start-page: 012005 year: 2022 ident: D4SC05205F/cit75/1 publication-title: J. Phys.: Conf. Ser. – volume: 290 start-page: 109674 year: 2019 ident: D4SC05205F/cit81/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2019.109674 – volume: 9 start-page: 3259 year: 2022 ident: D4SC05205F/cit112/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI00682K – volume: 59 start-page: 15497 year: 2020 ident: D4SC05205F/cit19/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201915766 – volume: 310 start-page: 121300 year: 2022 ident: D4SC05205F/cit63/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121300 – volume: 407 start-page: 124833 year: 2021 ident: D4SC05205F/cit10/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124833 – volume: 65 start-page: 295 year: 2015 ident: D4SC05205F/cit119/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.10.010 – volume: 263 start-page: 121492 year: 2020 ident: D4SC05205F/cit25/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.121492 – volume: 10 start-page: 10020070 year: 2022 ident: D4SC05205F/cit123/1 publication-title: Toxics – volume: 8 start-page: 14644 year: 2020 ident: D4SC05205F/cit125/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04891G – volume: 1394 start-page: 1 year: 2021 ident: D4SC05205F/cit59/1 publication-title: ACS Symp. Ser. doi: 10.1021/bk-2021-1394.ch001 – volume: 3 start-page: 25 year: 2017 ident: D4SC05205F/cit5/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700782 – volume: 10 start-page: 924 year: 2015 ident: D4SC05205F/cit100/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.251 – volume: 44 start-page: 245 year: 2021 ident: D4SC05205F/cit54/1 publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-021-02537-9 – volume: 58 start-page: 17010 year: 2019 ident: D4SC05205F/cit78/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b02205 – volume: 333 start-page: 125816 year: 2024 ident: D4SC05205F/cit43/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.125816 – volume: 750 start-page: 141514 year: 2021 ident: D4SC05205F/cit4/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141514 – volume: 23 start-page: 511 year: 2021 ident: D4SC05205F/cit67/1 publication-title: Green Chem. doi: 10.1039/D0GC03536J – volume: 47 start-page: 459 year: 2014 ident: D4SC05205F/cit107/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar400151n – volume: 13 start-page: 33546 year: 2021 ident: D4SC05205F/cit72/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c09202 – volume: 324 start-page: 128627 year: 2020 ident: D4SC05205F/cit111/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2020.128627 – volume: 140 start-page: 7716 year: 2018 ident: D4SC05205F/cit96/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04404 – volume: 10 start-page: 361 year: 2021 ident: D4SC05205F/cit60/1 publication-title: Green Process. Synth. doi: 10.1515/gps-2021-0036 – volume: 6 start-page: 337 year: 2020 ident: D4SC05205F/cit35/1 publication-title: Chem doi: 10.1016/j.chempr.2019.10.012 – volume: 43 start-page: 17867 year: 2018 ident: D4SC05205F/cit88/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.08.007 – volume: 41 start-page: 1900333 year: 2020 ident: D4SC05205F/cit69/1 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201900333 – volume: 5 start-page: 8477 year: 2017 ident: D4SC05205F/cit31/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00900C – volume: 7 start-page: 44507 year: 2022 ident: D4SC05205F/cit57/1 publication-title: ACS Omega doi: 10.1021/acsomega.2c05310 – volume: 14 start-page: 4216 year: 2022 ident: D4SC05205F/cit104/1 publication-title: Nanoscale doi: 10.1039/D1NR08120A – volume: 32 start-page: 748 year: 2021 ident: D4SC05205F/cit102/1 publication-title: Polym. Adv. Technol. doi: 10.1002/pat.5127 – volume: 70 start-page: 104499 year: 2020 ident: D4SC05205F/cit50/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104499 – volume: 4 start-page: 2751 year: 2013 ident: D4SC05205F/cit82/1 publication-title: Nat. Commun. doi: 10.1038/ncomms3751 – volume: 38 start-page: 186 year: 2022 ident: D4SC05205F/cit40/1 publication-title: Chem. Res. Chin. Univ. doi: 10.1007/s40242-021-1317-x – volume: 429 start-page: 132351 year: 2022 ident: D4SC05205F/cit6/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132351 – volume: 7 start-page: 35180 year: 2022 ident: D4SC05205F/cit118/1 publication-title: ACS Omega doi: 10.1021/acsomega.2c04264 – volume: 14 start-page: 1 year: 2021 ident: D4SC05205F/cit94/1 publication-title: Energies – volume: 135 start-page: 267 year: 2021 ident: D4SC05205F/cit62/1 publication-title: Waste Manage. doi: 10.1016/j.wasman.2021.09.009 – volume: 28 start-page: 9504 year: 2016 ident: D4SC05205F/cit84/1 publication-title: Adv. Mater. doi: 10.1002/adma.201603074 – volume: 6 start-page: 605 year: 2021 ident: D4SC05205F/cit36/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00291-2 – volume: 13 start-page: 525 year: 2019 ident: D4SC05205F/cit101/1 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0437-z – volume: 4 start-page: 1107 year: 2024 ident: D4SC05205F/cit16/1 publication-title: ACS EST Water doi: 10.1021/acsestwater.3c00386 – volume: 13 start-page: 8344 year: 2021 ident: D4SC05205F/cit58/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c20437 – volume: 13 start-page: 5360 year: 2022 ident: D4SC05205F/cit21/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32903-y – volume: 277 start-page: 119655 year: 2021 ident: D4SC05205F/cit126/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119655 – volume: 371 start-page: 672 year: 2021 ident: D4SC05205F/cit1/1 publication-title: Science doi: 10.1126/science.abe5041 – volume: 253 start-page: 123942 year: 2023 ident: D4SC05205F/cit115/1 publication-title: Talanta doi: 10.1016/j.talanta.2022.123942 – volume: 631–632 start-page: 449 year: 2018 ident: D4SC05205F/cit9/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.051 – volume: 198 start-page: 110016 year: 2022 ident: D4SC05205F/cit109/1 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2021.110016 – volume: 358 start-page: 870 year: 2017 ident: D4SC05205F/cit22/1 publication-title: Science doi: 10.1126/science.aaq0324 – volume: 300 start-page: 126963 year: 2021 ident: D4SC05205F/cit83/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2021.126963 – volume: 51 start-page: 16266 year: 2022 ident: D4SC05205F/cit121/1 publication-title: Dalton Trans. doi: 10.1039/D2DT02406C – volume: 14 start-page: 1 year: 2023 ident: D4SC05205F/cit106/1 publication-title: Nat. Commun. – volume: 8 start-page: 250 year: 2021 ident: D4SC05205F/cit64/1 publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.0c01002 – volume: 294 start-page: 133672 year: 2022 ident: D4SC05205F/cit30/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.133672 – volume: 136 start-page: 109182 year: 2022 ident: D4SC05205F/cit93/1 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2021.109182 – volume: 9 start-page: 6541 year: 2021 ident: D4SC05205F/cit55/1 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c08012 – start-page: 1 year: 2022 ident: D4SC05205F/cit20/1 publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 55 start-page: 7319 year: 2019 ident: D4SC05205F/cit27/1 publication-title: Chem. Commun. doi: 10.1039/C9CC02861G – start-page: 1 year: 2024 ident: D4SC05205F/cit85/1 publication-title: Aggregate – volume: 7 start-page: 35180 year: 2022 ident: D4SC05205F/cit28/1 publication-title: ACS Omega doi: 10.1021/acsomega.2c04264 – volume: 58 start-page: 7690 year: 2023 ident: D4SC05205F/cit117/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-023-08468-6 – volume: 56 start-page: 12483 year: 2022 ident: D4SC05205F/cit7/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c03980 |
| SSID | ssj0000331527 |
| Score | 2.5174935 |
| SecondaryResourceType | review_article |
| Snippet | Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous... |
| SourceID | pubmedcentral proquest pubmed crossref rsc |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 17781 |
| SubjectTerms | Adsorption Biochemical fuel cells Chemical bonds Chemistry Glycolysis Hydrophobicity Interdisciplinary studies Ligands Metal-organic frameworks Microorganisms Particulate composites Photocatalysis Plastic pollution Polymers Scintillation counters Threat evaluation Van der Waals forces |
| Title | When microplastics/plastics meet metal-organic frameworks: turning threats into opportunities |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39421205 https://www.proquest.com/docview/3124395087 https://www.proquest.com/docview/3117999100 https://pubmed.ncbi.nlm.nih.gov/PMC11474910 |
| Volume | 15 |
| WOSCitedRecordID | wos001334414600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (WRLC) customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAUL databaseName: Royal Society of Chemistry customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RRC dateStart: 20100101 isFulltext: true titleUrlDefault: https://pubs.rsc.org/ providerName: Royal Society of Chemistry |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UBL34ftTHEtGLh2K3aZvGm6wuHkTEF3sr2zzYBe0u265n_4P_0F_iJH3IooKUlkKmbZpJMt8kwzcAJ0KlEu1G5KaSK3RQ4sBNA_R50NigfQ05De3SwPMNu72Nez1-Nwcnf-zgU352GTx0TLBG2DUTLQtN172_7zQLKR6lVWpW3wvaboSiNQ3pzNOzhucHmvwZFDk_qXOAWFvTXf1fLddgpcKS5KJU_jrMqWwDljp1CrdNSHCqzciribkbI0o2jMxn9Q15VarAC4Lvz_ePMrmTILqO1crPCRojs2hCioEBljkZZsWIjMYGsE8zS8S6BU_dq8fOtVtlVHAF2p3CFZRKGgrDIcfwREeaCVShkJHCg_tCaZn6HpUcJ8k0ZrFupzpVOvU5jk6h6TYsZKNM7QKxvD0iCrTEEe31Rd-PNfO11xbCkyqSDpzWzZ2Iim7cZL14Sey2N-XJd5M5cNzIjkuSjV-lDmqtJdVAyxOK-ISaTLbMgaOmGJvZ7Hv0MzWaGhlDe4e4yHNgp1Ry8xnKzZa4FzoQz6i_ETD027Ml2XBgabjRk2QBvtWBbewpzQMyyIWtsN7712_tw7KPQKmMKzyAhWIyVYewKN6KYT5pwTzrxS27UtCy_f4L8sD7rA |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+microplastics%2Fplastics+meet+metal%E2%80%93organic+frameworks%3A+turning+threats+into+opportunities&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Wu%2C+Pengfei&rft.au=Guo%2C+Mengting&rft.au=Zhang%2C+Ran-Wei&rft.au=Huang%2C+Qing&rft.date=2024-10-08&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=15&rft.issue=43&rft.spage=17781&rft.epage=17798&rft_id=info:doi/10.1039%2FD4SC05205F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4SC05205F |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |