Self-adaptive attribute weighting for Naive Bayes classification

•Self-adaptive attribute weighting for Naive Bayes classification.•Using Artificial Immune Systems (AIS) for attribute weighting.•Seamlessly integrating learning objective and AIS affinity function for attribute weighting.•Experiments on 42 real-world datasets demonstrating superb performance gain....

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 42; no. 3; pp. 1487 - 1502
Main Authors: Wu, Jia, Pan, Shirui, Zhu, Xingquan, Cai, Zhihua, Zhang, Peng, Zhang, Chengqi
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Ltd 15.02.2015
Elsevier
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Self-adaptive attribute weighting for Naive Bayes classification.•Using Artificial Immune Systems (AIS) for attribute weighting.•Seamlessly integrating learning objective and AIS affinity function for attribute weighting.•Experiments on 42 real-world datasets demonstrating superb performance gain. Naive Bayes (NB) is a popular machine learning tool for classification, due to its simplicity, high computational efficiency, and good classification accuracy, especially for high dimensional data such as texts. In reality, the pronounced advantage of NB is often challenged by the strong conditional independence assumption between attributes, which may deteriorate the classification performance. Accordingly, numerous efforts have been made to improve NB, by using approaches such as structure extension, attribute selection, attribute weighting, instance weighting, local learning and so on. In this paper, we propose a new Artificial Immune System (AIS) based self-adaptive attribute weighting method for Naive Bayes classification. The proposed method, namely AISWNB, uses immunity theory in Artificial Immune Systems to search optimal attribute weight values, where self-adjusted weight values will alleviate the conditional independence assumption and help calculate the conditional probability in an accurate way. One noticeable advantage of AISWNB is that the unique immune system based evolutionary computation process, including initialization, clone, section, and mutation, ensures that AISWNB can adjust itself to the data without explicit specification of functional or distributional forms of the underlying model. As a result, AISWNB can obtain good attribute weight values during the learning process. Experiments and comparisons on 36 machine learning benchmark data sets and six image classification data sets demonstrate that AISWNB significantly outperforms its peers in classification accuracy, class probability estimation, and class ranking performance.
AbstractList Naive Bayes (NB) is a popular machine learning tool for classification, due to its simplicity, high computational efficiency, and good classification accuracy, especially for high dimensional data such as texts. In reality, the pronounced advantage of NB is often challenged by the strong conditional independence assumption between attributes, which may deteriorate the classification performance. Accordingly, numerous efforts have been made to improve NB, by using approaches such as structure extension, attribute selection, attribute weighting, instance weighting, local learning and so on. In this paper, we propose a new Artificial Immune System (AIS) based self-adaptive attribute weighting method for Naive Bayes classification. The proposed method, namely AISWNB, uses immunity theory in Artificial Immune Systems to search optimal attribute weight values, where self-adjusted weight values will alleviate the conditional independence assumption and help calculate the conditional probability in an accurate way. One noticeable advantage of AISWNB is that the unique immune system based evolutionary computation process, including initialization, clone, section, and mutation, ensures that AISWNB can adjust itself to the data without explicit specification of functional or distributional forms of the underlying model. As a result, AISWNB can obtain good attribute weight values during the learning process. Experiments and comparisons on 36 machine learning benchmark data sets and six image classification data sets demonstrate that AISWNB significantly outperforms its peers in classification accuracy, class probability estimation, and class ranking performance.
•Self-adaptive attribute weighting for Naive Bayes classification.•Using Artificial Immune Systems (AIS) for attribute weighting.•Seamlessly integrating learning objective and AIS affinity function for attribute weighting.•Experiments on 42 real-world datasets demonstrating superb performance gain. Naive Bayes (NB) is a popular machine learning tool for classification, due to its simplicity, high computational efficiency, and good classification accuracy, especially for high dimensional data such as texts. In reality, the pronounced advantage of NB is often challenged by the strong conditional independence assumption between attributes, which may deteriorate the classification performance. Accordingly, numerous efforts have been made to improve NB, by using approaches such as structure extension, attribute selection, attribute weighting, instance weighting, local learning and so on. In this paper, we propose a new Artificial Immune System (AIS) based self-adaptive attribute weighting method for Naive Bayes classification. The proposed method, namely AISWNB, uses immunity theory in Artificial Immune Systems to search optimal attribute weight values, where self-adjusted weight values will alleviate the conditional independence assumption and help calculate the conditional probability in an accurate way. One noticeable advantage of AISWNB is that the unique immune system based evolutionary computation process, including initialization, clone, section, and mutation, ensures that AISWNB can adjust itself to the data without explicit specification of functional or distributional forms of the underlying model. As a result, AISWNB can obtain good attribute weight values during the learning process. Experiments and comparisons on 36 machine learning benchmark data sets and six image classification data sets demonstrate that AISWNB significantly outperforms its peers in classification accuracy, class probability estimation, and class ranking performance.
Author Wu, Jia
Pan, Shirui
Zhang, Chengqi
Cai, Zhihua
Zhang, Peng
Zhu, Xingquan
Author_xml – sequence: 1
  givenname: Jia
  surname: Wu
  fullname: Wu, Jia
  email: jia.wu@student.uts.edu.au
  organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China
– sequence: 2
  givenname: Shirui
  surname: Pan
  fullname: Pan, Shirui
  email: shirui.pan@student.uts.edu.au
  organization: Quantum Computation & Intelligent Systems (QCIS) Centre, Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia
– sequence: 3
  givenname: Xingquan
  surname: Zhu
  fullname: Zhu, Xingquan
  email: xzhu3@fau.edu
  organization: Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
– sequence: 4
  givenname: Zhihua
  surname: Cai
  fullname: Cai, Zhihua
  email: zhcai@cug.edu.cn
  organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China
– sequence: 5
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  email: peng.zhang@uts.edu.au
  organization: Quantum Computation & Intelligent Systems (QCIS) Centre, Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia
– sequence: 6
  givenname: Chengqi
  surname: Zhang
  fullname: Zhang, Chengqi
  email: chengqi.zhang@uts.edu.au
  organization: Quantum Computation & Intelligent Systems (QCIS) Centre, Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28928469$$DView record in Pascal Francis
BookMark eNp9kMFu1DAQQC3USmxbfoBTLkhcEsaJ144lDkBVKFJFD8DZmozHxas0WWxvq_59s2y59NDTHOa9keadiKNpnliItxIaCVJ_2DSc77FpQaoGbAPSvhIr2Zuu1sZ2R2IFdm1qJY16LU5y3gBIA2BW4tNPHkONHrcl3nGFpaQ47ApX9xxv_pQ43VRhTtUP3G-_4APnikbMOYZIWOI8nYnjgGPmN0_zVPz-evHr_LK-uv72_fzzVU2qtaVGAqI198GELhCoYd13vrcDkEHNXWhN8Kw1efDceQxSh45Yt2x9NwxWd6fi_eHuNs1_d5yLu42ZeBxx4nmXndQaoFdWqQV994RiJhxDwolidtsUbzE9uLa3ba-0Xbj-wFGac04cHMXy76mSMI5OgtvHdRu3j-v2cR1Yt8Rd1PaZ-v_6i9LHg8RLp7vIyWWKPBH7mJiK83N8SX8ErtWW3g
CitedBy_id crossref_primary_10_1007_s11280_022_01129_9
crossref_primary_10_1016_j_asoc_2020_106856
crossref_primary_10_1007_s12652_020_01971_7
crossref_primary_10_1007_s11042_022_12232_4
crossref_primary_10_1016_j_eswa_2021_115424
crossref_primary_10_3390_electronics11193126
crossref_primary_10_1016_j_gexplo_2016_02_001
crossref_primary_10_1177_15741699251334321
crossref_primary_10_3233_JIFS_181009
crossref_primary_10_1007_s12652_021_03135_7
crossref_primary_10_1016_j_eswa_2015_05_051
crossref_primary_10_1016_j_patcog_2016_04_003
crossref_primary_10_1016_j_patcog_2017_02_036
crossref_primary_10_1016_j_asoc_2018_08_004
crossref_primary_10_1111_exsy_12976
crossref_primary_10_1016_j_ins_2018_02_059
crossref_primary_10_1016_j_ipm_2022_103186
crossref_primary_10_1088_1757_899X_846_1_012012
crossref_primary_10_4018_IJeC_304036
crossref_primary_10_1007_s00779_019_01273_6
crossref_primary_10_1109_ACCESS_2020_2976708
crossref_primary_10_1007_s11517_020_02215_8
crossref_primary_10_1109_ACCESS_2019_2919956
crossref_primary_10_3233_JIFS_211820
crossref_primary_10_1007_s11276_018_01901_8
crossref_primary_10_1109_ACCESS_2019_2947568
crossref_primary_10_1007_s41870_024_01991_y
crossref_primary_10_1016_j_ijar_2023_108964
crossref_primary_10_1016_j_techfore_2017_07_027
crossref_primary_10_1088_1755_1315_819_1_012004
crossref_primary_10_3233_JIFS_169937
crossref_primary_10_1007_s00521_017_2878_y
crossref_primary_10_1007_s10100_021_00782_1
crossref_primary_10_1111_exsy_12343
crossref_primary_10_1186_s12967_018_1758_2
crossref_primary_10_1088_1742_6596_1641_1_012023
crossref_primary_10_1007_s00521_016_2707_8
crossref_primary_10_1007_s10489_016_0843_6
crossref_primary_10_1007_s11432_020_3277_0
crossref_primary_10_1177_1687814016647615
crossref_primary_10_1016_j_knosys_2017_02_021
crossref_primary_10_1016_j_jnca_2024_104081
crossref_primary_10_1007_s12652_015_0316_5
crossref_primary_10_3233_IDA_226806
crossref_primary_10_32604_cmes_2021_016817
crossref_primary_10_3390_rs9121218
crossref_primary_10_1016_j_knosys_2020_106085
crossref_primary_10_1016_j_jestch_2022_101176
crossref_primary_10_3389_fgene_2023_1004481
crossref_primary_10_1016_j_ijar_2019_12_016
crossref_primary_10_1109_ACCESS_2017_2683533
crossref_primary_10_3390_electronics14101909
crossref_primary_10_3390_rs11101223
crossref_primary_10_1088_1757_899X_420_1_012086
crossref_primary_10_1109_ACCESS_2021_3051001
crossref_primary_10_1088_1757_899X_874_1_012032
Cites_doi 10.1016/j.knosys.2006.11.008
10.1109/TPAMI.2007.70847
10.1016/j.patcog.2012.06.001
10.1109/IJCNN.2013.6706818
10.1080/0952813X.2011.639092
10.1109/ICDM.2004.10030
10.1007/s10994-011-5263-6
10.1080/13658816.2012.730147
10.1109/TNNLS.2013.2238682
10.1007/s10462-010-9159-9
10.1016/j.eswa.2011.11.046
10.1109/TKDE.2012.192
10.1109/IJCNN.2013.6707028
10.1109/TKDE.2013.2297923
10.1016/j.eswa.2010.09.041
10.1007/3-540-57868-4_57
10.1109/ICDM.2005.87
10.1109/TKDE.2008.234
10.1109/ICCV.2013.86
10.1016/j.eswa.2012.03.022
10.1007/3-540-45357-1_9
10.1109/TGRS.2011.2162589
10.1145/1526709.1526867
10.1016/j.patcog.2013.05.002
10.1016/j.eswa.2008.06.054
10.1109/TSMCB.2009.2025504
10.1109/TEVC.2010.2043362
10.1007/978-3-642-33506-8_13
10.1023/A:1025667309714
10.1137/1.9781611973440.25
10.1016/j.eswa.2011.07.063
10.1145/1015330.1015339
10.1504/IJICT.2014.057970
10.1016/j.eswa.2011.08.064
10.1023/A:1010920819831
10.1007/978-3-540-30115-8_46
10.1109/TEVC.2010.2044242
10.1023/A:1007465528199
10.1109/TKDE.2006.180
10.1016/j.eswa.2010.12.053
10.1080/03052150903353328
10.1016/B978-1-55860-247-2.50037-1
10.1023/A:1008202821328
10.1109/69.738357
10.1007/s10115-007-0114-2
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2014.09.019
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 1502
ExternalDocumentID 28928469
10_1016_j_eswa_2014_09_019
S0957417414005582
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c429t-ac0cc5e8f7f3fc04b583d89b0c7a6e3f27fde66cd0de3daf16f3ce62e9d3bb963
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345734700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Sep 27 17:21:27 EDT 2025
Wed Apr 02 07:08:31 EDT 2025
Sat Nov 29 04:44:40 EST 2025
Tue Nov 18 21:34:47 EST 2025
Fri Feb 23 02:29:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Self-adaptive
Evolutionary computing
Naive Bayes
Artificial Immune Systems
Attribute weighting
Initialization
Artificial life
Image processing
Multicriteria analysis
Evolutionary algorithm
Adaptability
Conditional probability
Probabilistic reasoning
Immunity
Modeling
Adaptive method
Data specification
Efficiency
Selection criterion
Probability learning
Immune system
Bayes estimation
Local search
Computer vision
Data analysis
Probabilistic approach
Image databank
Independence
Text
Multidimensional database
Supervised learning
Learning (artificial intelligence)
Artificial intelligence
Image classification
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-ac0cc5e8f7f3fc04b583d89b0c7a6e3f27fde66cd0de3daf16f3ce62e9d3bb963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1660084944
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_1660084944
pascalfrancis_primary_28928469
crossref_citationtrail_10_1016_j_eswa_2014_09_019
crossref_primary_10_1016_j_eswa_2014_09_019
elsevier_sciencedirect_doi_10_1016_j_eswa_2014_09_019
PublicationCentury 2000
PublicationDate 2015-02-15
PublicationDateYYYYMMDD 2015-02-15
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Liu, Yang (b0150) 2013; 46
Ortega, Rui, Chakrabarti, Porkaew, Mehrotra, Huang (b0170) 1998; 10
Haktanirlar Ulutas, Kulturel-Konak (b0055) 2012; 39
Wu, J., Cai, Z., Zeng, S., & Zhu, X. (2013a). Artificial immune system for attribute weighted naive bayes classification. In
Grossman, D., & Domingos, P. (2004). Learning bayesian network classifiers by maximizing conditional likelihood. In
Jiang, Cai, Zhang, Wang (b0105) 2012; 39
Kim, Han, Rim, Myaeng (b0120) 2006; 18
Aickelin, Dasgupta, Gu (b0005) 2013
Huang, Liu, Li, Liang, He (b0095) 2013; 27
Kononenko, I. (1994). Estimating attributes: analysis and extensions of Relief. In
Hand, Till (b0070) 2001; 45
(pp. 1083–1084).
Woldemariam, Yen (b0210) 2010; 40
de Mello Honorio, Leite da Silva, Barbosa (b0035) 2012; 16
Witten, Frank (b0205) 2005
Zhang, H., & Sheng, S. (2004). Learning weighted naive bayes with accurate ranking. In
(pp. 217–225). Philadelphia, Pennsylvania, USA.
(pp. 501–512). Pisa, Italy.
(pp. 649–656). Sydney, Australia.
Chen, Sampathkumar, Luo, wen Chen (b0025) 2013; 25
(pp. 202–209). Washington, DC, USA.
Jiang, Zhang, Cai, Wang (b0115) 2012; 24
(pp. 2303–2310). Dallas, TX, USA.
Zhong, Zhang (b0275) 2012; 50
Kohavi, R. (1996). Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In
(pp. 171–182). Secaucus, NJ, USA.
Han, E.-H., Karypis, G., & Kumar, V. (2001). Text categorization using weight adjusted k-nearest neighbor classification. In
Robnik-Šikonja, Kononenko (b0185) 2003; 53
Jiang, Zhang, Cai (b0110) 2009; 21
.
Liu, Yue, Li (b0155) 2011; 38
Quinlan (b0180) 1993
(pp. 359–366). San Francisco, CA, USA.
Er, Yumusak, Temurtas (b0040) 2012; 39
(pp. 53–65). London, UK.
Jiang, L., & Zhang, H. (2005). Learning instance greedily cloning naive bayes for ranking. In
Hong, Z., Mei, X., Prokhorov, D., & Tao, D. (2013). Tracking via robust multi-task multi-view joint sparse representation. In
Castro, Timmis (b0015) 2002
Langley, Sage (b0140) 1994
Luo, Tao, Xu, Xu, Liu, Wen (b0165) 2013; 24
Wu, Kumar, Ross Quinlan, Ghosh, Yang, Motoda (b0235) 2007; 14
Ling, C.X., Huang, J., & Zhang, H. (2003). Auc: A statistically consistent and more discriminating measure than accuracy. In
Chen, Huang, Tian, Qu (b0020) 2009; 36
(pp. 519–524). San Francisco, CA, USA.
Hernández-González, Inza, Lozano (b0080) 2013; 46
(pp. 249–256). San Francisco, CA, USA.
Bache, K., & Lichman, M. (2013). UCI machine learning repository. URL
Hall, M.A. (2000). Correlation-based feature selection for discrete and numeric class machine learning. In
Storn, Price (b0190) 1997; 11
Wu, J., Cai, Z., & Zhu, X. (2013b). Self-adaptive probability estimation for naive bayes classification. In
Wu, J., Hong, Z., Pan, S., Zhu, X., Zhang, C., & Cai, Z. (2014a). Multi-graph learning with positive and unlabeled bags. In
Webb, Boughton, Zheng, Ting, Salem (b0200) 2012; 86
Friedman, Geiger, Goldszmidt (b0045) 1997; 29
(pp. 567–570). Washington, DC, USA.
Cuevas, Osuna-Enciso, Wario, Zaldívar, Pérez-Cisneros (b0030) 2012; 39
Li, Wang (b0160) 2008; 30
Huang, Chang, Hsieh, Sandnes (b0090) 2011; 38
Wu, Cai (b0215) 2014; 6
(pp. 202–207). Protland, Oregon, USA.
(pp. 798–805). Dallas, TX, USA.
Zaidi, Cerquides, Carman, Webb (b0250) 2013; 14
(pp. 361–368). New York, NY, USA.
Wu, Zhu, Zhang, Yu (b0240) 2014; 26
Yuan, Zhang, Zhao, Li, Zhang (b0245) 2012; 321
Park, Ryu (b0175) 2010; 14
Tucker, Kim, Barker, Zhang (b0195) 2010; 42
Zhang, H., & Su, J. (2004). Naive bayesian classifiers for ranking. In
Hall (b0065) 2007; 20
Zheng, Chen, Zhang (b0270) 2010; 34
Kira, K., & Rendell, L.A. (1992). A practical approach to feature selection. In
Zhang, C., Xue, G.-R., Yu, Y., & Zha, H. (2009). Web-scale classification with naive bayes. In
Jiang (10.1016/j.eswa.2014.09.019_b0110) 2009; 21
Liu (10.1016/j.eswa.2014.09.019_b0150) 2013; 46
Chen (10.1016/j.eswa.2014.09.019_b0020) 2009; 36
Quinlan (10.1016/j.eswa.2014.09.019_b0180) 1993
10.1016/j.eswa.2014.09.019_b0225
Storn (10.1016/j.eswa.2014.09.019_b0190) 1997; 11
Robnik-Šikonja (10.1016/j.eswa.2014.09.019_b0185) 2003; 53
Zaidi (10.1016/j.eswa.2014.09.019_b0250) 2013; 14
Er (10.1016/j.eswa.2014.09.019_b0040) 2012; 39
10.1016/j.eswa.2014.09.019_b0260
10.1016/j.eswa.2014.09.019_b0145
10.1016/j.eswa.2014.09.019_b0100
10.1016/j.eswa.2014.09.019_b0265
10.1016/j.eswa.2014.09.019_b0220
Zheng (10.1016/j.eswa.2014.09.019_b0270) 2010; 34
10.1016/j.eswa.2014.09.019_b0060
Hernández-González (10.1016/j.eswa.2014.09.019_b0080) 2013; 46
Jiang (10.1016/j.eswa.2014.09.019_b0105) 2012; 39
Castro (10.1016/j.eswa.2014.09.019_b0015) 2002
Haktanirlar Ulutas (10.1016/j.eswa.2014.09.019_b0055) 2012; 39
Wu (10.1016/j.eswa.2014.09.019_b0215) 2014; 6
10.1016/j.eswa.2014.09.019_b0135
Witten (10.1016/j.eswa.2014.09.019_b0205) 2005
Friedman (10.1016/j.eswa.2014.09.019_b0045) 1997; 29
Jiang (10.1016/j.eswa.2014.09.019_b0115) 2012; 24
10.1016/j.eswa.2014.09.019_b0130
Ortega (10.1016/j.eswa.2014.09.019_b0170) 1998; 10
Cuevas (10.1016/j.eswa.2014.09.019_b0030) 2012; 39
10.1016/j.eswa.2014.09.019_b0050
10.1016/j.eswa.2014.09.019_b0255
10.1016/j.eswa.2014.09.019_b0010
Huang (10.1016/j.eswa.2014.09.019_b0095) 2013; 27
Li (10.1016/j.eswa.2014.09.019_b0160) 2008; 30
Park (10.1016/j.eswa.2014.09.019_b0175) 2010; 14
Zhong (10.1016/j.eswa.2014.09.019_b0275) 2012; 50
Aickelin (10.1016/j.eswa.2014.09.019_b0005) 2013
Webb (10.1016/j.eswa.2014.09.019_b0200) 2012; 86
Wu (10.1016/j.eswa.2014.09.019_b0240) 2014; 26
10.1016/j.eswa.2014.09.019_b0125
de Mello Honorio (10.1016/j.eswa.2014.09.019_b0035) 2012; 16
Kim (10.1016/j.eswa.2014.09.019_b0120) 2006; 18
Liu (10.1016/j.eswa.2014.09.019_b0155) 2011; 38
10.1016/j.eswa.2014.09.019_b0085
Langley (10.1016/j.eswa.2014.09.019_b0140) 1994
Hall (10.1016/j.eswa.2014.09.019_b0065) 2007; 20
Luo (10.1016/j.eswa.2014.09.019_b0165) 2013; 24
Chen (10.1016/j.eswa.2014.09.019_b0025) 2013; 25
Woldemariam (10.1016/j.eswa.2014.09.019_b0210) 2010; 40
Wu (10.1016/j.eswa.2014.09.019_b0235) 2007; 14
10.1016/j.eswa.2014.09.019_b0075
Tucker (10.1016/j.eswa.2014.09.019_b0195) 2010; 42
Huang (10.1016/j.eswa.2014.09.019_b0090) 2011; 38
10.1016/j.eswa.2014.09.019_b0230
Hand (10.1016/j.eswa.2014.09.019_b0070) 2001; 45
Yuan (10.1016/j.eswa.2014.09.019_b0245) 2012; 321
References_xml – reference: Wu, J., Cai, Z., & Zhu, X. (2013b). Self-adaptive probability estimation for naive bayes classification. In
– volume: 16
  start-page: 301
  year: 2012
  end-page: 318
  ident: b0035
  article-title: A cluster and gradient-based artificial immune system applied in optimization scenarios
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 29
  start-page: 131
  year: 1997
  end-page: 163
  ident: b0045
  article-title: Bayesian network classifiers
  publication-title: Machine Learning
– volume: 27
  start-page: 922
  year: 2013
  end-page: 946
  ident: b0095
  article-title: An improved artificial immune system for seeking the Pareto front of land-use allocation problem in large areas
  publication-title: International Journal of Geographical Information Science
– volume: 26
  start-page: 2382
  year: 2014
  end-page: 2396
  ident: b0240
  article-title: Bag constrained structure pattern mining for multi-graph classification
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 1993
  ident: b0180
  article-title: C4.5: Programs for machine learning
– reference: (pp. 501–512). Pisa, Italy.
– reference: (pp. 217–225). Philadelphia, Pennsylvania, USA.
– reference: Hall, M.A. (2000). Correlation-based feature selection for discrete and numeric class machine learning. In
– volume: 39
  start-page: 713
  year: 2012
  end-page: 722
  ident: b0030
  article-title: Automatic multiple circle detection based on artificial immune systems
  publication-title: Expert Systems with Applications
– start-page: 67
  year: 2002
  end-page: 84
  ident: b0015
  article-title: Artificial immune systems: A novel paradigm to pattern recognition
  publication-title: Artificial neural networks in pattern recognition
– volume: 30
  start-page: 985
  year: 2008
  end-page: 1002
  ident: b0160
  article-title: Real-time computerized annotation of pictures
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Wu, J., Hong, Z., Pan, S., Zhu, X., Zhang, C., & Cai, Z. (2014a). Multi-graph learning with positive and unlabeled bags. In
– volume: 36
  start-page: 5432
  year: 2009
  end-page: 5435
  ident: b0020
  article-title: Feature selection for text classification with naive bayes
  publication-title: Expert Systems with Applications
– volume: 14
  start-page: 1947
  year: 2013
  end-page: 1988
  ident: b0250
  article-title: Alleviating naive bayes attribute independence assumption by attribute weighting
  publication-title: Journal of Machine Learning Research
– reference: (pp. 202–209). Washington, DC, USA.
– volume: 6
  start-page: 23
  year: 2014
  end-page: 38
  ident: b0215
  article-title: Learning attribute weighted AODE for ROC area ranking
  publication-title: International Journal of Information and Communication Technology
– reference: Han, E.-H., Karypis, G., & Kumar, V. (2001). Text categorization using weight adjusted k-nearest neighbor classification. In
– volume: 14
  start-page: 865
  year: 2010
  end-page: 884
  ident: b0175
  article-title: A dual-population genetic algorithm for adaptive diversity control
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 21
  start-page: 1361
  year: 2009
  end-page: 1371
  ident: b0110
  article-title: A novel bayes model: Hidden naive bayes
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 38
  start-page: 3806
  year: 2011
  end-page: 3818
  ident: b0090
  article-title: An adaptive knowledge evolution strategy for finding near-optimal solutions of specific problems
  publication-title: Expert Systems with Applications
– reference: (pp. 798–805). Dallas, TX, USA.
– reference: Kohavi, R. (1996). Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In
– volume: 40
  start-page: 218
  year: 2010
  end-page: 228
  ident: b0210
  article-title: Vaccine-enhanced artificial immune system for multimodal function optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics
– year: 2005
  ident: b0205
  publication-title: Data Mining: Practical machine learning tools and techniques
– volume: 46
  start-page: 188
  year: 2013
  end-page: 198
  ident: b0150
  article-title: Content-based image retrieval using color difference histogram
  publication-title: Pattern Recognition
– reference: Kononenko, I. (1994). Estimating attributes: analysis and extensions of Relief. In
– volume: 45
  start-page: 171
  year: 2001
  end-page: 186
  ident: b0070
  article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems
  publication-title: Machine Learning
– volume: 10
  start-page: 905
  year: 1998
  end-page: 925
  ident: b0170
  article-title: Supporting ranked boolean similarity queries in mars
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Jiang, L., & Zhang, H. (2005). Learning instance greedily cloning naive bayes for ranking. In
– reference: (pp. 2303–2310). Dallas, TX, USA.
– volume: 20
  start-page: 120
  year: 2007
  end-page: 126
  ident: b0065
  article-title: A decision tree-based attribute weighting filter for naive bayes
  publication-title: Knowledge-Based Systems
– volume: 39
  start-page: 11022
  year: 2012
  end-page: 11028
  ident: b0105
  article-title: Not so greedy: Randomly selected naive bayes
  publication-title: Expert Systems with Applications
– reference: Wu, J., Cai, Z., Zeng, S., & Zhu, X. (2013a). Artificial immune system for attribute weighted naive bayes classification. In
– reference: Ling, C.X., Huang, J., & Zhang, H. (2003). Auc: A statistically consistent and more discriminating measure than accuracy. In
– volume: 39
  start-page: 5384
  year: 2012
  end-page: 5395
  ident: b0055
  article-title: An artificial immune system based algorithm to solve unequal area facility layout problem
  publication-title: Expert Systems with Applications
– reference: Grossman, D., & Domingos, P. (2004). Learning bayesian network classifiers by maximizing conditional likelihood. In
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0190
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– reference: Zhang, C., Xue, G.-R., Yu, Y., & Zha, H. (2009). Web-scale classification with naive bayes. In
– reference: Bache, K., & Lichman, M. (2013). UCI machine learning repository. URL:
– volume: 321
  start-page: 96
  year: 2012
  end-page: 103
  ident: b0245
  article-title: An improved self-organization antibody network for pattern recognition and its performance study
  publication-title: Pattern Recognition
– year: 2013
  ident: b0005
  article-title: Artificial immune systems (intros 2)
  publication-title: CoRR
– reference: (pp. 359–366). San Francisco, CA, USA.
– reference: (pp. 202–207). Protland, Oregon, USA.
– volume: 38
  start-page: 7123
  year: 2011
  end-page: 7134
  ident: b0155
  article-title: Constructing the bayesian network structure from dependencies implied in multiple relational schemas
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 709
  year: 2013
  end-page: 722
  ident: b0165
  article-title: Multiview vector-valued manifold regularization for multilabel image classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 50
  start-page: 894
  year: 2012
  end-page: 909
  ident: b0275
  article-title: An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– reference: (pp. 361–368). New York, NY, USA.
– volume: 53
  start-page: 23
  year: 2003
  end-page: 69
  ident: b0185
  article-title: Theoretical and empirical analysis of relieff and rrelieff
  publication-title: Machine Learning
– volume: 24
  start-page: 219
  year: 2012
  end-page: 230
  ident: b0115
  article-title: Weighted average of one-dependence estimators?
  publication-title: Journal of Experimental and Theoretical Artificial Intelligence
– reference: (pp. 249–256). San Francisco, CA, USA.
– volume: 39
  start-page: 1862
  year: 2012
  end-page: 1868
  ident: b0040
  article-title: Diagnosis of chest diseases using artificial immune system
  publication-title: Expert Systems with Applications
– reference: Zhang, H., & Su, J. (2004). Naive bayesian classifiers for ranking. In
– reference: (pp. 171–182). Secaucus, NJ, USA.
– reference: Kira, K., & Rendell, L.A. (1992). A practical approach to feature selection. In
– start-page: 339
  year: 1994
  end-page: 406
  ident: b0140
  article-title: Induction of selective bayesian classifiers
  publication-title: Proceedings of the tenth international conference on uncertainty in artificial intelligence UAI’94
– reference: .
– volume: 14
  start-page: 1
  year: 2007
  end-page: 37
  ident: b0235
  article-title: Top 10 algorithms in data mining
  publication-title: Knowledge and Information Systems
– reference: (pp. 649–656). Sydney, Australia.
– reference: (pp. 519–524). San Francisco, CA, USA.
– reference: (pp. 567–570). Washington, DC, USA.
– volume: 34
  start-page: 19
  year: 2010
  end-page: 34
  ident: b0270
  article-title: A survey of artificial immune applications
  publication-title: Artificial Intelligence Review
– reference: (pp. 1083–1084).
– reference: Zhang, H., & Sheng, S. (2004). Learning weighted naive bayes with accurate ranking. In
– volume: 25
  start-page: 2257
  year: 2013
  end-page: 2270
  ident: b0025
  article-title: iLike: Bridging the semantic gap in vertical image search by integrating text and visual features
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 42
  start-page: 593
  year: 2010
  end-page: 616
  ident: b0195
  article-title: A relieff attribute weighting and x-means clustering methodology for top-down product family optimization
  publication-title: Engineering Optimization
– reference: (pp. 53–65). London, UK.
– volume: 86
  start-page: 233
  year: 2012
  end-page: 272
  ident: b0200
  article-title: Learning by extrapolation from marginal to full-multivariate probability distributions: Decreasingly naive bayesian classification
  publication-title: Machine Learning
– volume: 18
  start-page: 1457
  year: 2006
  end-page: 1466
  ident: b0120
  article-title: Some effective techniques for naive bayes text classification
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Hong, Z., Mei, X., Prokhorov, D., & Tao, D. (2013). Tracking via robust multi-task multi-view joint sparse representation. In
– volume: 46
  start-page: 3425
  year: 2013
  end-page: 3440
  ident: b0080
  article-title: Learning bayesian network classifiers from label proportions
  publication-title: Pattern Recognition
– ident: 10.1016/j.eswa.2014.09.019_b0060
– volume: 20
  start-page: 120
  year: 2007
  ident: 10.1016/j.eswa.2014.09.019_b0065
  article-title: A decision tree-based attribute weighting filter for naive bayes
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2006.11.008
– volume: 30
  start-page: 985
  year: 2008
  ident: 10.1016/j.eswa.2014.09.019_b0160
  article-title: Real-time computerized annotation of pictures
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.70847
– year: 1993
  ident: 10.1016/j.eswa.2014.09.019_b0180
– volume: 46
  start-page: 188
  year: 2013
  ident: 10.1016/j.eswa.2014.09.019_b0150
  article-title: Content-based image retrieval using color difference histogram
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.06.001
– ident: 10.1016/j.eswa.2014.09.019_b0220
  doi: 10.1109/IJCNN.2013.6706818
– volume: 24
  start-page: 219
  year: 2012
  ident: 10.1016/j.eswa.2014.09.019_b0115
  article-title: Weighted average of one-dependence estimators?
  publication-title: Journal of Experimental and Theoretical Artificial Intelligence
  doi: 10.1080/0952813X.2011.639092
– ident: 10.1016/j.eswa.2014.09.019_b0255
  doi: 10.1109/ICDM.2004.10030
– volume: 86
  start-page: 233
  year: 2012
  ident: 10.1016/j.eswa.2014.09.019_b0200
  article-title: Learning by extrapolation from marginal to full-multivariate probability distributions: Decreasingly naive bayesian classification
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5263-6
– volume: 27
  start-page: 922
  year: 2013
  ident: 10.1016/j.eswa.2014.09.019_b0095
  article-title: An improved artificial immune system for seeking the Pareto front of land-use allocation problem in large areas
  publication-title: International Journal of Geographical Information Science
  doi: 10.1080/13658816.2012.730147
– year: 2013
  ident: 10.1016/j.eswa.2014.09.019_b0005
  article-title: Artificial immune systems (intros 2)
  publication-title: CoRR
– volume: 24
  start-page: 709
  year: 2013
  ident: 10.1016/j.eswa.2014.09.019_b0165
  article-title: Multiview vector-valued manifold regularization for multilabel image classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2238682
– volume: 34
  start-page: 19
  year: 2010
  ident: 10.1016/j.eswa.2014.09.019_b0270
  article-title: A survey of artificial immune applications
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-010-9159-9
– volume: 39
  start-page: 5384
  year: 2012
  ident: 10.1016/j.eswa.2014.09.019_b0055
  article-title: An artificial immune system based algorithm to solve unequal area facility layout problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.11.046
– volume: 25
  start-page: 2257
  year: 2013
  ident: 10.1016/j.eswa.2014.09.019_b0025
  article-title: iLike: Bridging the semantic gap in vertical image search by integrating text and visual features
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2012.192
– start-page: 339
  year: 1994
  ident: 10.1016/j.eswa.2014.09.019_b0140
  article-title: Induction of selective bayesian classifiers
– year: 2005
  ident: 10.1016/j.eswa.2014.09.019_b0205
– ident: 10.1016/j.eswa.2014.09.019_b0225
  doi: 10.1109/IJCNN.2013.6707028
– volume: 26
  start-page: 2382
  year: 2014
  ident: 10.1016/j.eswa.2014.09.019_b0240
  article-title: Bag constrained structure pattern mining for multi-graph classification
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2013.2297923
– volume: 38
  start-page: 3806
  year: 2011
  ident: 10.1016/j.eswa.2014.09.019_b0090
  article-title: An adaptive knowledge evolution strategy for finding near-optimal solutions of specific problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.09.041
– ident: 10.1016/j.eswa.2014.09.019_b0135
  doi: 10.1007/3-540-57868-4_57
– ident: 10.1016/j.eswa.2014.09.019_b0010
– ident: 10.1016/j.eswa.2014.09.019_b0100
  doi: 10.1109/ICDM.2005.87
– volume: 21
  start-page: 1361
  year: 2009
  ident: 10.1016/j.eswa.2014.09.019_b0110
  article-title: A novel bayes model: Hidden naive bayes
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2008.234
– ident: 10.1016/j.eswa.2014.09.019_b0085
  doi: 10.1109/ICCV.2013.86
– volume: 39
  start-page: 11022
  year: 2012
  ident: 10.1016/j.eswa.2014.09.019_b0105
  article-title: Not so greedy: Randomly selected naive bayes
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.03.022
– ident: 10.1016/j.eswa.2014.09.019_b0075
  doi: 10.1007/3-540-45357-1_9
– volume: 14
  start-page: 1947
  year: 2013
  ident: 10.1016/j.eswa.2014.09.019_b0250
  article-title: Alleviating naive bayes attribute independence assumption by attribute weighting
  publication-title: Journal of Machine Learning Research
– volume: 50
  start-page: 894
  year: 2012
  ident: 10.1016/j.eswa.2014.09.019_b0275
  article-title: An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2011.2162589
– ident: 10.1016/j.eswa.2014.09.019_b0265
  doi: 10.1145/1526709.1526867
– volume: 46
  start-page: 3425
  year: 2013
  ident: 10.1016/j.eswa.2014.09.019_b0080
  article-title: Learning bayesian network classifiers from label proportions
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2013.05.002
– volume: 36
  start-page: 5432
  year: 2009
  ident: 10.1016/j.eswa.2014.09.019_b0020
  article-title: Feature selection for text classification with naive bayes
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.06.054
– volume: 40
  start-page: 218
  year: 2010
  ident: 10.1016/j.eswa.2014.09.019_b0210
  article-title: Vaccine-enhanced artificial immune system for multimodal function optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics
  doi: 10.1109/TSMCB.2009.2025504
– volume: 14
  start-page: 865
  year: 2010
  ident: 10.1016/j.eswa.2014.09.019_b0175
  article-title: A dual-population genetic algorithm for adaptive diversity control
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2043362
– volume: 321
  start-page: 96
  year: 2012
  ident: 10.1016/j.eswa.2014.09.019_b0245
  article-title: An improved self-organization antibody network for pattern recognition and its performance study
  publication-title: Pattern Recognition
  doi: 10.1007/978-3-642-33506-8_13
– ident: 10.1016/j.eswa.2014.09.019_b0145
– volume: 53
  start-page: 23
  year: 2003
  ident: 10.1016/j.eswa.2014.09.019_b0185
  article-title: Theoretical and empirical analysis of relieff and rrelieff
  publication-title: Machine Learning
  doi: 10.1023/A:1025667309714
– ident: 10.1016/j.eswa.2014.09.019_b0230
  doi: 10.1137/1.9781611973440.25
– volume: 39
  start-page: 713
  year: 2012
  ident: 10.1016/j.eswa.2014.09.019_b0030
  article-title: Automatic multiple circle detection based on artificial immune systems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.07.063
– ident: 10.1016/j.eswa.2014.09.019_b0050
  doi: 10.1145/1015330.1015339
– volume: 6
  start-page: 23
  year: 2014
  ident: 10.1016/j.eswa.2014.09.019_b0215
  article-title: Learning attribute weighted AODE for ROC area ranking
  publication-title: International Journal of Information and Communication Technology
  doi: 10.1504/IJICT.2014.057970
– volume: 39
  start-page: 1862
  year: 2012
  ident: 10.1016/j.eswa.2014.09.019_b0040
  article-title: Diagnosis of chest diseases using artificial immune system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.08.064
– volume: 45
  start-page: 171
  year: 2001
  ident: 10.1016/j.eswa.2014.09.019_b0070
  article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems
  publication-title: Machine Learning
  doi: 10.1023/A:1010920819831
– ident: 10.1016/j.eswa.2014.09.019_b0260
  doi: 10.1007/978-3-540-30115-8_46
– start-page: 67
  year: 2002
  ident: 10.1016/j.eswa.2014.09.019_b0015
  article-title: Artificial immune systems: A novel paradigm to pattern recognition
– volume: 16
  start-page: 301
  year: 2012
  ident: 10.1016/j.eswa.2014.09.019_b0035
  article-title: A cluster and gradient-based artificial immune system applied in optimization scenarios
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2044242
– volume: 29
  start-page: 131
  year: 1997
  ident: 10.1016/j.eswa.2014.09.019_b0045
  article-title: Bayesian network classifiers
  publication-title: Machine Learning
  doi: 10.1023/A:1007465528199
– volume: 18
  start-page: 1457
  year: 2006
  ident: 10.1016/j.eswa.2014.09.019_b0120
  article-title: Some effective techniques for naive bayes text classification
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2006.180
– ident: 10.1016/j.eswa.2014.09.019_b0130
– volume: 38
  start-page: 7123
  year: 2011
  ident: 10.1016/j.eswa.2014.09.019_b0155
  article-title: Constructing the bayesian network structure from dependencies implied in multiple relational schemas
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.12.053
– volume: 42
  start-page: 593
  year: 2010
  ident: 10.1016/j.eswa.2014.09.019_b0195
  article-title: A relieff attribute weighting and x-means clustering methodology for top-down product family optimization
  publication-title: Engineering Optimization
  doi: 10.1080/03052150903353328
– ident: 10.1016/j.eswa.2014.09.019_b0125
  doi: 10.1016/B978-1-55860-247-2.50037-1
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.eswa.2014.09.019_b0190
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 10
  start-page: 905
  year: 1998
  ident: 10.1016/j.eswa.2014.09.019_b0170
  article-title: Supporting ranked boolean similarity queries in mars
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/69.738357
– volume: 14
  start-page: 1
  year: 2007
  ident: 10.1016/j.eswa.2014.09.019_b0235
  article-title: Top 10 algorithms in data mining
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-007-0114-2
SSID ssj0017007
Score 2.4522684
Snippet •Self-adaptive attribute weighting for Naive Bayes classification.•Using Artificial Immune Systems (AIS) for attribute weighting.•Seamlessly integrating...
Naive Bayes (NB) is a popular machine learning tool for classification, due to its simplicity, high computational efficiency, and good classification accuracy,...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1487
SubjectTerms Accuracy
Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial Immune Systems
Artificial intelligence
Attribute weighting
Bayesian analysis
Classification
Computer science; control theory; systems
Data processing. List processing. Character string processing
Evolutionary computing
Exact sciences and technology
Learning
Learning and adaptive systems
Machine learning
Memory organisation. Data processing
Naive Bayes
Pattern recognition. Digital image processing. Computational geometry
Self-adaptive
Software
Theoretical computing
Weighting
Title Self-adaptive attribute weighting for Naive Bayes classification
URI https://dx.doi.org/10.1016/j.eswa.2014.09.019
https://www.proquest.com/docview/1660084944
Volume 42
WOSCitedRecordID wos000345734700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBYh3cNg7D7abise7C24-C7pbV3p2MYIhXYQ9iJkWSIOwc0Suxf253dkSbazS9kG84MxsmzJOp-Pjo7OBaHXEc1jHbrM55QTWKCEhc_DPPRFJNJcBUWUmZD5n_B0SmYzejoafXO-MJdLXFXk-pqu_iupoQyIrV1n_4Lc3UuhAK6B6HAGssP5jwh_JpfK5wVftUZBvDYpreTkqlWCOsPJKdd33_IbuZkILUFrk6GeSovOQk-uaxvu2TnCDba8O5betGgoOx5_avWq83LdlL1yuq02gz58bXpUHpuM2F_m5bzhQy1E2Hp1Gz9Moxpz7jG9LZLRMWI_CU0ankNpOCzBsZ9hkxbRseAkGkAtHvBTWKzhwdwM0mv0S75vVBCLQ7m50sGkQhO81jLj7XjaZ7pXulOwtAzSlMD8vRPhlJIx2jn6cDL72G1C4cB427uvsD5Xxjzwx5Z-J9fcW_EN_G3KpEn5acZvxZjzh-i-XX94RwY3j9BIVo_RA5fbw7Os_gl6swUjr4OR18HIAxh5LYy8FkbeNoyeos_vTs6P3_s224YvQCapfS4CIVJJFFaxEkGSpyQuCM0DgXkmYxVhVcgsE0VQyLjgKsxULGQWSVrEeQ58_BkaVxeV3EWe1ipEnEt9JEkiCQ2U4PAyUgRQQvZQ6MaKCRuKXmdEWTJnc7hgenyZHl8WUAbju4cm3TMrE4jl1tqpIwGzoqQRERkg5tbnDrbo1TUVEQqCXAYVXjkCMmDEeneNV_Ki2bAwy3RyCpok-__Y-HN0t_-1XqBxvW7kS3RHXNblZn1g0fkd-3eyEQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-adaptive+attribute+weighting+for+Naive+Bayes+classification&rft.jtitle=Expert+systems+with+applications&rft.au=Wu%2C+Jia&rft.au=Pan%2C+Shirui&rft.au=Zhu%2C+Xingquan&rft.au=Cai%2C+Zhihua&rft.date=2015-02-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=42&rft.issue=3&rft.spage=1487&rft.epage=1502&rft_id=info:doi/10.1016%2Fj.eswa.2014.09.019&rft.externalDocID=S0957417414005582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon