Self-adaptive attribute weighting for Naive Bayes classification
•Self-adaptive attribute weighting for Naive Bayes classification.•Using Artificial Immune Systems (AIS) for attribute weighting.•Seamlessly integrating learning objective and AIS affinity function for attribute weighting.•Experiments on 42 real-world datasets demonstrating superb performance gain....
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 42; číslo 3; s. 1487 - 1502 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Ltd
15.02.2015
Elsevier |
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Self-adaptive attribute weighting for Naive Bayes classification.•Using Artificial Immune Systems (AIS) for attribute weighting.•Seamlessly integrating learning objective and AIS affinity function for attribute weighting.•Experiments on 42 real-world datasets demonstrating superb performance gain.
Naive Bayes (NB) is a popular machine learning tool for classification, due to its simplicity, high computational efficiency, and good classification accuracy, especially for high dimensional data such as texts. In reality, the pronounced advantage of NB is often challenged by the strong conditional independence assumption between attributes, which may deteriorate the classification performance. Accordingly, numerous efforts have been made to improve NB, by using approaches such as structure extension, attribute selection, attribute weighting, instance weighting, local learning and so on. In this paper, we propose a new Artificial Immune System (AIS) based self-adaptive attribute weighting method for Naive Bayes classification. The proposed method, namely AISWNB, uses immunity theory in Artificial Immune Systems to search optimal attribute weight values, where self-adjusted weight values will alleviate the conditional independence assumption and help calculate the conditional probability in an accurate way. One noticeable advantage of AISWNB is that the unique immune system based evolutionary computation process, including initialization, clone, section, and mutation, ensures that AISWNB can adjust itself to the data without explicit specification of functional or distributional forms of the underlying model. As a result, AISWNB can obtain good attribute weight values during the learning process. Experiments and comparisons on 36 machine learning benchmark data sets and six image classification data sets demonstrate that AISWNB significantly outperforms its peers in classification accuracy, class probability estimation, and class ranking performance. |
|---|---|
| AbstractList | Naive Bayes (NB) is a popular machine learning tool for classification, due to its simplicity, high computational efficiency, and good classification accuracy, especially for high dimensional data such as texts. In reality, the pronounced advantage of NB is often challenged by the strong conditional independence assumption between attributes, which may deteriorate the classification performance. Accordingly, numerous efforts have been made to improve NB, by using approaches such as structure extension, attribute selection, attribute weighting, instance weighting, local learning and so on. In this paper, we propose a new Artificial Immune System (AIS) based self-adaptive attribute weighting method for Naive Bayes classification. The proposed method, namely AISWNB, uses immunity theory in Artificial Immune Systems to search optimal attribute weight values, where self-adjusted weight values will alleviate the conditional independence assumption and help calculate the conditional probability in an accurate way. One noticeable advantage of AISWNB is that the unique immune system based evolutionary computation process, including initialization, clone, section, and mutation, ensures that AISWNB can adjust itself to the data without explicit specification of functional or distributional forms of the underlying model. As a result, AISWNB can obtain good attribute weight values during the learning process. Experiments and comparisons on 36 machine learning benchmark data sets and six image classification data sets demonstrate that AISWNB significantly outperforms its peers in classification accuracy, class probability estimation, and class ranking performance. •Self-adaptive attribute weighting for Naive Bayes classification.•Using Artificial Immune Systems (AIS) for attribute weighting.•Seamlessly integrating learning objective and AIS affinity function for attribute weighting.•Experiments on 42 real-world datasets demonstrating superb performance gain. Naive Bayes (NB) is a popular machine learning tool for classification, due to its simplicity, high computational efficiency, and good classification accuracy, especially for high dimensional data such as texts. In reality, the pronounced advantage of NB is often challenged by the strong conditional independence assumption between attributes, which may deteriorate the classification performance. Accordingly, numerous efforts have been made to improve NB, by using approaches such as structure extension, attribute selection, attribute weighting, instance weighting, local learning and so on. In this paper, we propose a new Artificial Immune System (AIS) based self-adaptive attribute weighting method for Naive Bayes classification. The proposed method, namely AISWNB, uses immunity theory in Artificial Immune Systems to search optimal attribute weight values, where self-adjusted weight values will alleviate the conditional independence assumption and help calculate the conditional probability in an accurate way. One noticeable advantage of AISWNB is that the unique immune system based evolutionary computation process, including initialization, clone, section, and mutation, ensures that AISWNB can adjust itself to the data without explicit specification of functional or distributional forms of the underlying model. As a result, AISWNB can obtain good attribute weight values during the learning process. Experiments and comparisons on 36 machine learning benchmark data sets and six image classification data sets demonstrate that AISWNB significantly outperforms its peers in classification accuracy, class probability estimation, and class ranking performance. |
| Author | Wu, Jia Pan, Shirui Zhang, Chengqi Cai, Zhihua Zhang, Peng Zhu, Xingquan |
| Author_xml | – sequence: 1 givenname: Jia surname: Wu fullname: Wu, Jia email: jia.wu@student.uts.edu.au organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China – sequence: 2 givenname: Shirui surname: Pan fullname: Pan, Shirui email: shirui.pan@student.uts.edu.au organization: Quantum Computation & Intelligent Systems (QCIS) Centre, Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia – sequence: 3 givenname: Xingquan surname: Zhu fullname: Zhu, Xingquan email: xzhu3@fau.edu organization: Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA – sequence: 4 givenname: Zhihua surname: Cai fullname: Cai, Zhihua email: zhcai@cug.edu.cn organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China – sequence: 5 givenname: Peng surname: Zhang fullname: Zhang, Peng email: peng.zhang@uts.edu.au organization: Quantum Computation & Intelligent Systems (QCIS) Centre, Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia – sequence: 6 givenname: Chengqi surname: Zhang fullname: Zhang, Chengqi email: chengqi.zhang@uts.edu.au organization: Quantum Computation & Intelligent Systems (QCIS) Centre, Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28928469$$DView record in Pascal Francis |
| BookMark | eNp9kMFu1DAQQC3USmxbfoBTLkhcEsaJ144lDkBVKFJFD8DZmozHxas0WWxvq_59s2y59NDTHOa9keadiKNpnliItxIaCVJ_2DSc77FpQaoGbAPSvhIr2Zuu1sZ2R2IFdm1qJY16LU5y3gBIA2BW4tNPHkONHrcl3nGFpaQ47ApX9xxv_pQ43VRhTtUP3G-_4APnikbMOYZIWOI8nYnjgGPmN0_zVPz-evHr_LK-uv72_fzzVU2qtaVGAqI198GELhCoYd13vrcDkEHNXWhN8Kw1efDceQxSh45Yt2x9NwxWd6fi_eHuNs1_d5yLu42ZeBxx4nmXndQaoFdWqQV994RiJhxDwolidtsUbzE9uLa3ba-0Xbj-wFGac04cHMXy76mSMI5OgtvHdRu3j-v2cR1Yt8Rd1PaZ-v_6i9LHg8RLp7vIyWWKPBH7mJiK83N8SX8ErtWW3g |
| CitedBy_id | crossref_primary_10_1007_s11280_022_01129_9 crossref_primary_10_1016_j_asoc_2020_106856 crossref_primary_10_1007_s12652_020_01971_7 crossref_primary_10_1007_s11042_022_12232_4 crossref_primary_10_1016_j_eswa_2021_115424 crossref_primary_10_3390_electronics11193126 crossref_primary_10_1016_j_gexplo_2016_02_001 crossref_primary_10_1177_15741699251334321 crossref_primary_10_3233_JIFS_181009 crossref_primary_10_1007_s12652_021_03135_7 crossref_primary_10_1016_j_eswa_2015_05_051 crossref_primary_10_1016_j_patcog_2016_04_003 crossref_primary_10_1016_j_patcog_2017_02_036 crossref_primary_10_1016_j_asoc_2018_08_004 crossref_primary_10_1111_exsy_12976 crossref_primary_10_1016_j_ins_2018_02_059 crossref_primary_10_1016_j_ipm_2022_103186 crossref_primary_10_1088_1757_899X_846_1_012012 crossref_primary_10_4018_IJeC_304036 crossref_primary_10_1007_s00779_019_01273_6 crossref_primary_10_1109_ACCESS_2020_2976708 crossref_primary_10_1007_s11517_020_02215_8 crossref_primary_10_1109_ACCESS_2019_2919956 crossref_primary_10_3233_JIFS_211820 crossref_primary_10_1007_s11276_018_01901_8 crossref_primary_10_1109_ACCESS_2019_2947568 crossref_primary_10_1007_s41870_024_01991_y crossref_primary_10_1016_j_ijar_2023_108964 crossref_primary_10_1016_j_techfore_2017_07_027 crossref_primary_10_1088_1755_1315_819_1_012004 crossref_primary_10_3233_JIFS_169937 crossref_primary_10_1007_s00521_017_2878_y crossref_primary_10_1007_s10100_021_00782_1 crossref_primary_10_1111_exsy_12343 crossref_primary_10_1186_s12967_018_1758_2 crossref_primary_10_1088_1742_6596_1641_1_012023 crossref_primary_10_1007_s00521_016_2707_8 crossref_primary_10_1007_s10489_016_0843_6 crossref_primary_10_1007_s11432_020_3277_0 crossref_primary_10_1177_1687814016647615 crossref_primary_10_1016_j_knosys_2017_02_021 crossref_primary_10_1016_j_jnca_2024_104081 crossref_primary_10_1007_s12652_015_0316_5 crossref_primary_10_3233_IDA_226806 crossref_primary_10_32604_cmes_2021_016817 crossref_primary_10_3390_rs9121218 crossref_primary_10_1016_j_knosys_2020_106085 crossref_primary_10_1016_j_jestch_2022_101176 crossref_primary_10_3389_fgene_2023_1004481 crossref_primary_10_1016_j_ijar_2019_12_016 crossref_primary_10_1109_ACCESS_2017_2683533 crossref_primary_10_3390_electronics14101909 crossref_primary_10_3390_rs11101223 crossref_primary_10_1088_1757_899X_420_1_012086 crossref_primary_10_1109_ACCESS_2021_3051001 crossref_primary_10_1088_1757_899X_874_1_012032 |
| Cites_doi | 10.1016/j.knosys.2006.11.008 10.1109/TPAMI.2007.70847 10.1016/j.patcog.2012.06.001 10.1109/IJCNN.2013.6706818 10.1080/0952813X.2011.639092 10.1109/ICDM.2004.10030 10.1007/s10994-011-5263-6 10.1080/13658816.2012.730147 10.1109/TNNLS.2013.2238682 10.1007/s10462-010-9159-9 10.1016/j.eswa.2011.11.046 10.1109/TKDE.2012.192 10.1109/IJCNN.2013.6707028 10.1109/TKDE.2013.2297923 10.1016/j.eswa.2010.09.041 10.1007/3-540-57868-4_57 10.1109/ICDM.2005.87 10.1109/TKDE.2008.234 10.1109/ICCV.2013.86 10.1016/j.eswa.2012.03.022 10.1007/3-540-45357-1_9 10.1109/TGRS.2011.2162589 10.1145/1526709.1526867 10.1016/j.patcog.2013.05.002 10.1016/j.eswa.2008.06.054 10.1109/TSMCB.2009.2025504 10.1109/TEVC.2010.2043362 10.1007/978-3-642-33506-8_13 10.1023/A:1025667309714 10.1137/1.9781611973440.25 10.1016/j.eswa.2011.07.063 10.1145/1015330.1015339 10.1504/IJICT.2014.057970 10.1016/j.eswa.2011.08.064 10.1023/A:1010920819831 10.1007/978-3-540-30115-8_46 10.1109/TEVC.2010.2044242 10.1023/A:1007465528199 10.1109/TKDE.2006.180 10.1016/j.eswa.2010.12.053 10.1080/03052150903353328 10.1016/B978-1-55860-247-2.50037-1 10.1023/A:1008202821328 10.1109/69.738357 10.1007/s10115-007-0114-2 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2014.09.019 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-6793 |
| EndPage | 1502 |
| ExternalDocumentID | 28928469 10_1016_j_eswa_2014_09_019 S0957417414005582 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c429t-ac0cc5e8f7f3fc04b583d89b0c7a6e3f27fde66cd0de3daf16f3ce62e9d3bb963 |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345734700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Sep 27 17:21:27 EDT 2025 Wed Apr 02 07:08:31 EDT 2025 Sat Nov 29 04:44:40 EST 2025 Tue Nov 18 21:34:47 EST 2025 Fri Feb 23 02:29:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Self-adaptive Evolutionary computing Naive Bayes Artificial Immune Systems Attribute weighting Initialization Artificial life Image processing Multicriteria analysis Evolutionary algorithm Adaptability Conditional probability Probabilistic reasoning Immunity Modeling Adaptive method Data specification Efficiency Selection criterion Probability learning Immune system Bayes estimation Local search Computer vision Data analysis Probabilistic approach Image databank Independence Text Multidimensional database Supervised learning Learning (artificial intelligence) Artificial intelligence Image classification |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c429t-ac0cc5e8f7f3fc04b583d89b0c7a6e3f27fde66cd0de3daf16f3ce62e9d3bb963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1660084944 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1660084944 pascalfrancis_primary_28928469 crossref_citationtrail_10_1016_j_eswa_2014_09_019 crossref_primary_10_1016_j_eswa_2014_09_019 elsevier_sciencedirect_doi_10_1016_j_eswa_2014_09_019 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-02-15 |
| PublicationDateYYYYMMDD | 2015-02-15 |
| PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Liu, Yang (b0150) 2013; 46 Ortega, Rui, Chakrabarti, Porkaew, Mehrotra, Huang (b0170) 1998; 10 Haktanirlar Ulutas, Kulturel-Konak (b0055) 2012; 39 Wu, J., Cai, Z., Zeng, S., & Zhu, X. (2013a). Artificial immune system for attribute weighted naive bayes classification. In Grossman, D., & Domingos, P. (2004). Learning bayesian network classifiers by maximizing conditional likelihood. In Jiang, Cai, Zhang, Wang (b0105) 2012; 39 Kim, Han, Rim, Myaeng (b0120) 2006; 18 Aickelin, Dasgupta, Gu (b0005) 2013 Huang, Liu, Li, Liang, He (b0095) 2013; 27 Kononenko, I. (1994). Estimating attributes: analysis and extensions of Relief. In Hand, Till (b0070) 2001; 45 (pp. 1083–1084). Woldemariam, Yen (b0210) 2010; 40 de Mello Honorio, Leite da Silva, Barbosa (b0035) 2012; 16 Witten, Frank (b0205) 2005 Zhang, H., & Sheng, S. (2004). Learning weighted naive bayes with accurate ranking. In (pp. 217–225). Philadelphia, Pennsylvania, USA. (pp. 501–512). Pisa, Italy. (pp. 649–656). Sydney, Australia. Chen, Sampathkumar, Luo, wen Chen (b0025) 2013; 25 (pp. 202–209). Washington, DC, USA. Jiang, Zhang, Cai, Wang (b0115) 2012; 24 (pp. 2303–2310). Dallas, TX, USA. Zhong, Zhang (b0275) 2012; 50 Kohavi, R. (1996). Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In (pp. 171–182). Secaucus, NJ, USA. Han, E.-H., Karypis, G., & Kumar, V. (2001). Text categorization using weight adjusted k-nearest neighbor classification. In Robnik-Šikonja, Kononenko (b0185) 2003; 53 Jiang, Zhang, Cai (b0110) 2009; 21 . Liu, Yue, Li (b0155) 2011; 38 Quinlan (b0180) 1993 (pp. 359–366). San Francisco, CA, USA. Er, Yumusak, Temurtas (b0040) 2012; 39 (pp. 53–65). London, UK. Jiang, L., & Zhang, H. (2005). Learning instance greedily cloning naive bayes for ranking. In Hong, Z., Mei, X., Prokhorov, D., & Tao, D. (2013). Tracking via robust multi-task multi-view joint sparse representation. In Castro, Timmis (b0015) 2002 Langley, Sage (b0140) 1994 Luo, Tao, Xu, Xu, Liu, Wen (b0165) 2013; 24 Wu, Kumar, Ross Quinlan, Ghosh, Yang, Motoda (b0235) 2007; 14 Ling, C.X., Huang, J., & Zhang, H. (2003). Auc: A statistically consistent and more discriminating measure than accuracy. In Chen, Huang, Tian, Qu (b0020) 2009; 36 (pp. 519–524). San Francisco, CA, USA. Hernández-González, Inza, Lozano (b0080) 2013; 46 (pp. 249–256). San Francisco, CA, USA. Bache, K., & Lichman, M. (2013). UCI machine learning repository. URL Hall, M.A. (2000). Correlation-based feature selection for discrete and numeric class machine learning. In Storn, Price (b0190) 1997; 11 Wu, J., Cai, Z., & Zhu, X. (2013b). Self-adaptive probability estimation for naive bayes classification. In Wu, J., Hong, Z., Pan, S., Zhu, X., Zhang, C., & Cai, Z. (2014a). Multi-graph learning with positive and unlabeled bags. In Webb, Boughton, Zheng, Ting, Salem (b0200) 2012; 86 Friedman, Geiger, Goldszmidt (b0045) 1997; 29 (pp. 567–570). Washington, DC, USA. Cuevas, Osuna-Enciso, Wario, Zaldívar, Pérez-Cisneros (b0030) 2012; 39 Li, Wang (b0160) 2008; 30 Huang, Chang, Hsieh, Sandnes (b0090) 2011; 38 Wu, Cai (b0215) 2014; 6 (pp. 202–207). Protland, Oregon, USA. (pp. 798–805). Dallas, TX, USA. Zaidi, Cerquides, Carman, Webb (b0250) 2013; 14 (pp. 361–368). New York, NY, USA. Wu, Zhu, Zhang, Yu (b0240) 2014; 26 Yuan, Zhang, Zhao, Li, Zhang (b0245) 2012; 321 Park, Ryu (b0175) 2010; 14 Tucker, Kim, Barker, Zhang (b0195) 2010; 42 Zhang, H., & Su, J. (2004). Naive bayesian classifiers for ranking. In Hall (b0065) 2007; 20 Zheng, Chen, Zhang (b0270) 2010; 34 Kira, K., & Rendell, L.A. (1992). A practical approach to feature selection. In Zhang, C., Xue, G.-R., Yu, Y., & Zha, H. (2009). Web-scale classification with naive bayes. In Jiang (10.1016/j.eswa.2014.09.019_b0110) 2009; 21 Liu (10.1016/j.eswa.2014.09.019_b0150) 2013; 46 Chen (10.1016/j.eswa.2014.09.019_b0020) 2009; 36 Quinlan (10.1016/j.eswa.2014.09.019_b0180) 1993 10.1016/j.eswa.2014.09.019_b0225 Storn (10.1016/j.eswa.2014.09.019_b0190) 1997; 11 Robnik-Šikonja (10.1016/j.eswa.2014.09.019_b0185) 2003; 53 Zaidi (10.1016/j.eswa.2014.09.019_b0250) 2013; 14 Er (10.1016/j.eswa.2014.09.019_b0040) 2012; 39 10.1016/j.eswa.2014.09.019_b0260 10.1016/j.eswa.2014.09.019_b0145 10.1016/j.eswa.2014.09.019_b0100 10.1016/j.eswa.2014.09.019_b0265 10.1016/j.eswa.2014.09.019_b0220 Zheng (10.1016/j.eswa.2014.09.019_b0270) 2010; 34 10.1016/j.eswa.2014.09.019_b0060 Hernández-González (10.1016/j.eswa.2014.09.019_b0080) 2013; 46 Jiang (10.1016/j.eswa.2014.09.019_b0105) 2012; 39 Castro (10.1016/j.eswa.2014.09.019_b0015) 2002 Haktanirlar Ulutas (10.1016/j.eswa.2014.09.019_b0055) 2012; 39 Wu (10.1016/j.eswa.2014.09.019_b0215) 2014; 6 10.1016/j.eswa.2014.09.019_b0135 Witten (10.1016/j.eswa.2014.09.019_b0205) 2005 Friedman (10.1016/j.eswa.2014.09.019_b0045) 1997; 29 Jiang (10.1016/j.eswa.2014.09.019_b0115) 2012; 24 10.1016/j.eswa.2014.09.019_b0130 Ortega (10.1016/j.eswa.2014.09.019_b0170) 1998; 10 Cuevas (10.1016/j.eswa.2014.09.019_b0030) 2012; 39 10.1016/j.eswa.2014.09.019_b0050 10.1016/j.eswa.2014.09.019_b0255 10.1016/j.eswa.2014.09.019_b0010 Huang (10.1016/j.eswa.2014.09.019_b0095) 2013; 27 Li (10.1016/j.eswa.2014.09.019_b0160) 2008; 30 Park (10.1016/j.eswa.2014.09.019_b0175) 2010; 14 Zhong (10.1016/j.eswa.2014.09.019_b0275) 2012; 50 Aickelin (10.1016/j.eswa.2014.09.019_b0005) 2013 Webb (10.1016/j.eswa.2014.09.019_b0200) 2012; 86 Wu (10.1016/j.eswa.2014.09.019_b0240) 2014; 26 10.1016/j.eswa.2014.09.019_b0125 de Mello Honorio (10.1016/j.eswa.2014.09.019_b0035) 2012; 16 Kim (10.1016/j.eswa.2014.09.019_b0120) 2006; 18 Liu (10.1016/j.eswa.2014.09.019_b0155) 2011; 38 10.1016/j.eswa.2014.09.019_b0085 Langley (10.1016/j.eswa.2014.09.019_b0140) 1994 Hall (10.1016/j.eswa.2014.09.019_b0065) 2007; 20 Luo (10.1016/j.eswa.2014.09.019_b0165) 2013; 24 Chen (10.1016/j.eswa.2014.09.019_b0025) 2013; 25 Woldemariam (10.1016/j.eswa.2014.09.019_b0210) 2010; 40 Wu (10.1016/j.eswa.2014.09.019_b0235) 2007; 14 10.1016/j.eswa.2014.09.019_b0075 Tucker (10.1016/j.eswa.2014.09.019_b0195) 2010; 42 Huang (10.1016/j.eswa.2014.09.019_b0090) 2011; 38 10.1016/j.eswa.2014.09.019_b0230 Hand (10.1016/j.eswa.2014.09.019_b0070) 2001; 45 Yuan (10.1016/j.eswa.2014.09.019_b0245) 2012; 321 |
| References_xml | – reference: Wu, J., Cai, Z., & Zhu, X. (2013b). Self-adaptive probability estimation for naive bayes classification. In – volume: 16 start-page: 301 year: 2012 end-page: 318 ident: b0035 article-title: A cluster and gradient-based artificial immune system applied in optimization scenarios publication-title: IEEE Transactions on Evolutionary Computation – volume: 29 start-page: 131 year: 1997 end-page: 163 ident: b0045 article-title: Bayesian network classifiers publication-title: Machine Learning – volume: 27 start-page: 922 year: 2013 end-page: 946 ident: b0095 article-title: An improved artificial immune system for seeking the Pareto front of land-use allocation problem in large areas publication-title: International Journal of Geographical Information Science – volume: 26 start-page: 2382 year: 2014 end-page: 2396 ident: b0240 article-title: Bag constrained structure pattern mining for multi-graph classification publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 1993 ident: b0180 article-title: C4.5: Programs for machine learning – reference: (pp. 501–512). Pisa, Italy. – reference: (pp. 217–225). Philadelphia, Pennsylvania, USA. – reference: Hall, M.A. (2000). Correlation-based feature selection for discrete and numeric class machine learning. In – volume: 39 start-page: 713 year: 2012 end-page: 722 ident: b0030 article-title: Automatic multiple circle detection based on artificial immune systems publication-title: Expert Systems with Applications – start-page: 67 year: 2002 end-page: 84 ident: b0015 article-title: Artificial immune systems: A novel paradigm to pattern recognition publication-title: Artificial neural networks in pattern recognition – volume: 30 start-page: 985 year: 2008 end-page: 1002 ident: b0160 article-title: Real-time computerized annotation of pictures publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Wu, J., Hong, Z., Pan, S., Zhu, X., Zhang, C., & Cai, Z. (2014a). Multi-graph learning with positive and unlabeled bags. In – volume: 36 start-page: 5432 year: 2009 end-page: 5435 ident: b0020 article-title: Feature selection for text classification with naive bayes publication-title: Expert Systems with Applications – volume: 14 start-page: 1947 year: 2013 end-page: 1988 ident: b0250 article-title: Alleviating naive bayes attribute independence assumption by attribute weighting publication-title: Journal of Machine Learning Research – reference: (pp. 202–209). Washington, DC, USA. – volume: 6 start-page: 23 year: 2014 end-page: 38 ident: b0215 article-title: Learning attribute weighted AODE for ROC area ranking publication-title: International Journal of Information and Communication Technology – reference: Han, E.-H., Karypis, G., & Kumar, V. (2001). Text categorization using weight adjusted k-nearest neighbor classification. In – volume: 14 start-page: 865 year: 2010 end-page: 884 ident: b0175 article-title: A dual-population genetic algorithm for adaptive diversity control publication-title: IEEE Transactions on Evolutionary Computation – volume: 21 start-page: 1361 year: 2009 end-page: 1371 ident: b0110 article-title: A novel bayes model: Hidden naive bayes publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 38 start-page: 3806 year: 2011 end-page: 3818 ident: b0090 article-title: An adaptive knowledge evolution strategy for finding near-optimal solutions of specific problems publication-title: Expert Systems with Applications – reference: (pp. 798–805). Dallas, TX, USA. – reference: Kohavi, R. (1996). Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In – volume: 40 start-page: 218 year: 2010 end-page: 228 ident: b0210 article-title: Vaccine-enhanced artificial immune system for multimodal function optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics – year: 2005 ident: b0205 publication-title: Data Mining: Practical machine learning tools and techniques – volume: 46 start-page: 188 year: 2013 end-page: 198 ident: b0150 article-title: Content-based image retrieval using color difference histogram publication-title: Pattern Recognition – reference: Kononenko, I. (1994). Estimating attributes: analysis and extensions of Relief. In – volume: 45 start-page: 171 year: 2001 end-page: 186 ident: b0070 article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems publication-title: Machine Learning – volume: 10 start-page: 905 year: 1998 end-page: 925 ident: b0170 article-title: Supporting ranked boolean similarity queries in mars publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: Jiang, L., & Zhang, H. (2005). Learning instance greedily cloning naive bayes for ranking. In – reference: (pp. 2303–2310). Dallas, TX, USA. – volume: 20 start-page: 120 year: 2007 end-page: 126 ident: b0065 article-title: A decision tree-based attribute weighting filter for naive bayes publication-title: Knowledge-Based Systems – volume: 39 start-page: 11022 year: 2012 end-page: 11028 ident: b0105 article-title: Not so greedy: Randomly selected naive bayes publication-title: Expert Systems with Applications – reference: Wu, J., Cai, Z., Zeng, S., & Zhu, X. (2013a). Artificial immune system for attribute weighted naive bayes classification. In – reference: Ling, C.X., Huang, J., & Zhang, H. (2003). Auc: A statistically consistent and more discriminating measure than accuracy. In – volume: 39 start-page: 5384 year: 2012 end-page: 5395 ident: b0055 article-title: An artificial immune system based algorithm to solve unequal area facility layout problem publication-title: Expert Systems with Applications – reference: Grossman, D., & Domingos, P. (2004). Learning bayesian network classifiers by maximizing conditional likelihood. In – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0190 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – reference: Zhang, C., Xue, G.-R., Yu, Y., & Zha, H. (2009). Web-scale classification with naive bayes. In – reference: Bache, K., & Lichman, M. (2013). UCI machine learning repository. URL: – volume: 321 start-page: 96 year: 2012 end-page: 103 ident: b0245 article-title: An improved self-organization antibody network for pattern recognition and its performance study publication-title: Pattern Recognition – year: 2013 ident: b0005 article-title: Artificial immune systems (intros 2) publication-title: CoRR – reference: (pp. 359–366). San Francisco, CA, USA. – reference: (pp. 202–207). Protland, Oregon, USA. – volume: 38 start-page: 7123 year: 2011 end-page: 7134 ident: b0155 article-title: Constructing the bayesian network structure from dependencies implied in multiple relational schemas publication-title: Expert Systems with Applications – volume: 24 start-page: 709 year: 2013 end-page: 722 ident: b0165 article-title: Multiview vector-valued manifold regularization for multilabel image classification publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 50 start-page: 894 year: 2012 end-page: 909 ident: b0275 article-title: An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery publication-title: IEEE Transactions on Geoscience and Remote Sensing – reference: (pp. 361–368). New York, NY, USA. – volume: 53 start-page: 23 year: 2003 end-page: 69 ident: b0185 article-title: Theoretical and empirical analysis of relieff and rrelieff publication-title: Machine Learning – volume: 24 start-page: 219 year: 2012 end-page: 230 ident: b0115 article-title: Weighted average of one-dependence estimators? publication-title: Journal of Experimental and Theoretical Artificial Intelligence – reference: (pp. 249–256). San Francisco, CA, USA. – volume: 39 start-page: 1862 year: 2012 end-page: 1868 ident: b0040 article-title: Diagnosis of chest diseases using artificial immune system publication-title: Expert Systems with Applications – reference: Zhang, H., & Su, J. (2004). Naive bayesian classifiers for ranking. In – reference: (pp. 171–182). Secaucus, NJ, USA. – reference: Kira, K., & Rendell, L.A. (1992). A practical approach to feature selection. In – start-page: 339 year: 1994 end-page: 406 ident: b0140 article-title: Induction of selective bayesian classifiers publication-title: Proceedings of the tenth international conference on uncertainty in artificial intelligence UAI’94 – reference: . – volume: 14 start-page: 1 year: 2007 end-page: 37 ident: b0235 article-title: Top 10 algorithms in data mining publication-title: Knowledge and Information Systems – reference: (pp. 649–656). Sydney, Australia. – reference: (pp. 519–524). San Francisco, CA, USA. – reference: (pp. 567–570). Washington, DC, USA. – volume: 34 start-page: 19 year: 2010 end-page: 34 ident: b0270 article-title: A survey of artificial immune applications publication-title: Artificial Intelligence Review – reference: (pp. 1083–1084). – reference: Zhang, H., & Sheng, S. (2004). Learning weighted naive bayes with accurate ranking. In – volume: 25 start-page: 2257 year: 2013 end-page: 2270 ident: b0025 article-title: iLike: Bridging the semantic gap in vertical image search by integrating text and visual features publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 42 start-page: 593 year: 2010 end-page: 616 ident: b0195 article-title: A relieff attribute weighting and x-means clustering methodology for top-down product family optimization publication-title: Engineering Optimization – reference: (pp. 53–65). London, UK. – volume: 86 start-page: 233 year: 2012 end-page: 272 ident: b0200 article-title: Learning by extrapolation from marginal to full-multivariate probability distributions: Decreasingly naive bayesian classification publication-title: Machine Learning – volume: 18 start-page: 1457 year: 2006 end-page: 1466 ident: b0120 article-title: Some effective techniques for naive bayes text classification publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: Hong, Z., Mei, X., Prokhorov, D., & Tao, D. (2013). Tracking via robust multi-task multi-view joint sparse representation. In – volume: 46 start-page: 3425 year: 2013 end-page: 3440 ident: b0080 article-title: Learning bayesian network classifiers from label proportions publication-title: Pattern Recognition – ident: 10.1016/j.eswa.2014.09.019_b0060 – volume: 20 start-page: 120 year: 2007 ident: 10.1016/j.eswa.2014.09.019_b0065 article-title: A decision tree-based attribute weighting filter for naive bayes publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2006.11.008 – volume: 30 start-page: 985 year: 2008 ident: 10.1016/j.eswa.2014.09.019_b0160 article-title: Real-time computerized annotation of pictures publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2007.70847 – year: 1993 ident: 10.1016/j.eswa.2014.09.019_b0180 – volume: 46 start-page: 188 year: 2013 ident: 10.1016/j.eswa.2014.09.019_b0150 article-title: Content-based image retrieval using color difference histogram publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.06.001 – ident: 10.1016/j.eswa.2014.09.019_b0220 doi: 10.1109/IJCNN.2013.6706818 – volume: 24 start-page: 219 year: 2012 ident: 10.1016/j.eswa.2014.09.019_b0115 article-title: Weighted average of one-dependence estimators? publication-title: Journal of Experimental and Theoretical Artificial Intelligence doi: 10.1080/0952813X.2011.639092 – ident: 10.1016/j.eswa.2014.09.019_b0255 doi: 10.1109/ICDM.2004.10030 – volume: 86 start-page: 233 year: 2012 ident: 10.1016/j.eswa.2014.09.019_b0200 article-title: Learning by extrapolation from marginal to full-multivariate probability distributions: Decreasingly naive bayesian classification publication-title: Machine Learning doi: 10.1007/s10994-011-5263-6 – volume: 27 start-page: 922 year: 2013 ident: 10.1016/j.eswa.2014.09.019_b0095 article-title: An improved artificial immune system for seeking the Pareto front of land-use allocation problem in large areas publication-title: International Journal of Geographical Information Science doi: 10.1080/13658816.2012.730147 – year: 2013 ident: 10.1016/j.eswa.2014.09.019_b0005 article-title: Artificial immune systems (intros 2) publication-title: CoRR – volume: 24 start-page: 709 year: 2013 ident: 10.1016/j.eswa.2014.09.019_b0165 article-title: Multiview vector-valued manifold regularization for multilabel image classification publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2238682 – volume: 34 start-page: 19 year: 2010 ident: 10.1016/j.eswa.2014.09.019_b0270 article-title: A survey of artificial immune applications publication-title: Artificial Intelligence Review doi: 10.1007/s10462-010-9159-9 – volume: 39 start-page: 5384 year: 2012 ident: 10.1016/j.eswa.2014.09.019_b0055 article-title: An artificial immune system based algorithm to solve unequal area facility layout problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.11.046 – volume: 25 start-page: 2257 year: 2013 ident: 10.1016/j.eswa.2014.09.019_b0025 article-title: iLike: Bridging the semantic gap in vertical image search by integrating text and visual features publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2012.192 – start-page: 339 year: 1994 ident: 10.1016/j.eswa.2014.09.019_b0140 article-title: Induction of selective bayesian classifiers – year: 2005 ident: 10.1016/j.eswa.2014.09.019_b0205 – ident: 10.1016/j.eswa.2014.09.019_b0225 doi: 10.1109/IJCNN.2013.6707028 – volume: 26 start-page: 2382 year: 2014 ident: 10.1016/j.eswa.2014.09.019_b0240 article-title: Bag constrained structure pattern mining for multi-graph classification publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2013.2297923 – volume: 38 start-page: 3806 year: 2011 ident: 10.1016/j.eswa.2014.09.019_b0090 article-title: An adaptive knowledge evolution strategy for finding near-optimal solutions of specific problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.09.041 – ident: 10.1016/j.eswa.2014.09.019_b0135 doi: 10.1007/3-540-57868-4_57 – ident: 10.1016/j.eswa.2014.09.019_b0010 – ident: 10.1016/j.eswa.2014.09.019_b0100 doi: 10.1109/ICDM.2005.87 – volume: 21 start-page: 1361 year: 2009 ident: 10.1016/j.eswa.2014.09.019_b0110 article-title: A novel bayes model: Hidden naive bayes publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2008.234 – ident: 10.1016/j.eswa.2014.09.019_b0085 doi: 10.1109/ICCV.2013.86 – volume: 39 start-page: 11022 year: 2012 ident: 10.1016/j.eswa.2014.09.019_b0105 article-title: Not so greedy: Randomly selected naive bayes publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.03.022 – ident: 10.1016/j.eswa.2014.09.019_b0075 doi: 10.1007/3-540-45357-1_9 – volume: 14 start-page: 1947 year: 2013 ident: 10.1016/j.eswa.2014.09.019_b0250 article-title: Alleviating naive bayes attribute independence assumption by attribute weighting publication-title: Journal of Machine Learning Research – volume: 50 start-page: 894 year: 2012 ident: 10.1016/j.eswa.2014.09.019_b0275 article-title: An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2011.2162589 – ident: 10.1016/j.eswa.2014.09.019_b0265 doi: 10.1145/1526709.1526867 – volume: 46 start-page: 3425 year: 2013 ident: 10.1016/j.eswa.2014.09.019_b0080 article-title: Learning bayesian network classifiers from label proportions publication-title: Pattern Recognition doi: 10.1016/j.patcog.2013.05.002 – volume: 36 start-page: 5432 year: 2009 ident: 10.1016/j.eswa.2014.09.019_b0020 article-title: Feature selection for text classification with naive bayes publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.06.054 – volume: 40 start-page: 218 year: 2010 ident: 10.1016/j.eswa.2014.09.019_b0210 article-title: Vaccine-enhanced artificial immune system for multimodal function optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics doi: 10.1109/TSMCB.2009.2025504 – volume: 14 start-page: 865 year: 2010 ident: 10.1016/j.eswa.2014.09.019_b0175 article-title: A dual-population genetic algorithm for adaptive diversity control publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2043362 – volume: 321 start-page: 96 year: 2012 ident: 10.1016/j.eswa.2014.09.019_b0245 article-title: An improved self-organization antibody network for pattern recognition and its performance study publication-title: Pattern Recognition doi: 10.1007/978-3-642-33506-8_13 – ident: 10.1016/j.eswa.2014.09.019_b0145 – volume: 53 start-page: 23 year: 2003 ident: 10.1016/j.eswa.2014.09.019_b0185 article-title: Theoretical and empirical analysis of relieff and rrelieff publication-title: Machine Learning doi: 10.1023/A:1025667309714 – ident: 10.1016/j.eswa.2014.09.019_b0230 doi: 10.1137/1.9781611973440.25 – volume: 39 start-page: 713 year: 2012 ident: 10.1016/j.eswa.2014.09.019_b0030 article-title: Automatic multiple circle detection based on artificial immune systems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.07.063 – ident: 10.1016/j.eswa.2014.09.019_b0050 doi: 10.1145/1015330.1015339 – volume: 6 start-page: 23 year: 2014 ident: 10.1016/j.eswa.2014.09.019_b0215 article-title: Learning attribute weighted AODE for ROC area ranking publication-title: International Journal of Information and Communication Technology doi: 10.1504/IJICT.2014.057970 – volume: 39 start-page: 1862 year: 2012 ident: 10.1016/j.eswa.2014.09.019_b0040 article-title: Diagnosis of chest diseases using artificial immune system publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.08.064 – volume: 45 start-page: 171 year: 2001 ident: 10.1016/j.eswa.2014.09.019_b0070 article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems publication-title: Machine Learning doi: 10.1023/A:1010920819831 – ident: 10.1016/j.eswa.2014.09.019_b0260 doi: 10.1007/978-3-540-30115-8_46 – start-page: 67 year: 2002 ident: 10.1016/j.eswa.2014.09.019_b0015 article-title: Artificial immune systems: A novel paradigm to pattern recognition – volume: 16 start-page: 301 year: 2012 ident: 10.1016/j.eswa.2014.09.019_b0035 article-title: A cluster and gradient-based artificial immune system applied in optimization scenarios publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2044242 – volume: 29 start-page: 131 year: 1997 ident: 10.1016/j.eswa.2014.09.019_b0045 article-title: Bayesian network classifiers publication-title: Machine Learning doi: 10.1023/A:1007465528199 – volume: 18 start-page: 1457 year: 2006 ident: 10.1016/j.eswa.2014.09.019_b0120 article-title: Some effective techniques for naive bayes text classification publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2006.180 – ident: 10.1016/j.eswa.2014.09.019_b0130 – volume: 38 start-page: 7123 year: 2011 ident: 10.1016/j.eswa.2014.09.019_b0155 article-title: Constructing the bayesian network structure from dependencies implied in multiple relational schemas publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.12.053 – volume: 42 start-page: 593 year: 2010 ident: 10.1016/j.eswa.2014.09.019_b0195 article-title: A relieff attribute weighting and x-means clustering methodology for top-down product family optimization publication-title: Engineering Optimization doi: 10.1080/03052150903353328 – ident: 10.1016/j.eswa.2014.09.019_b0125 doi: 10.1016/B978-1-55860-247-2.50037-1 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.eswa.2014.09.019_b0190 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 10 start-page: 905 year: 1998 ident: 10.1016/j.eswa.2014.09.019_b0170 article-title: Supporting ranked boolean similarity queries in mars publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/69.738357 – volume: 14 start-page: 1 year: 2007 ident: 10.1016/j.eswa.2014.09.019_b0235 article-title: Top 10 algorithms in data mining publication-title: Knowledge and Information Systems doi: 10.1007/s10115-007-0114-2 |
| SSID | ssj0017007 |
| Score | 2.4522684 |
| Snippet | •Self-adaptive attribute weighting for Naive Bayes classification.•Using Artificial Immune Systems (AIS) for attribute weighting.•Seamlessly integrating... Naive Bayes (NB) is a popular machine learning tool for classification, due to its simplicity, high computational efficiency, and good classification accuracy,... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1487 |
| SubjectTerms | Accuracy Algorithmics. Computability. Computer arithmetics Applied sciences Artificial Immune Systems Artificial intelligence Attribute weighting Bayesian analysis Classification Computer science; control theory; systems Data processing. List processing. Character string processing Evolutionary computing Exact sciences and technology Learning Learning and adaptive systems Machine learning Memory organisation. Data processing Naive Bayes Pattern recognition. Digital image processing. Computational geometry Self-adaptive Software Theoretical computing Weighting |
| Title | Self-adaptive attribute weighting for Naive Bayes classification |
| URI | https://dx.doi.org/10.1016/j.eswa.2014.09.019 https://www.proquest.com/docview/1660084944 |
| Volume | 42 |
| WOSCitedRecordID | wos000345734700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEJlbdogSpIiMsqKK-14xul2grQaqnEFkVcLMextVlVabpJaPn3jGMnm-VRlQOXKEqcOPJ8nozHM_Mh9Fppeu0QU1dFYeZGWIVuHGfE5SSEdRzY237r0P86I_N5nCT0xGaXVC2dACmK-OqKlv9V1HANhK1TZ_9B3P1L4QKcg9DhCGKH440E_0WeKZdnvGyDgnhtKK3k-LJ1gnaBk3Ou777nP2Q1FtqC1iFDGymt-gg9ua5tuecuEW6w5d2r9KZFQ97r-BPrV13m6ybfOKfbZgl8w0WzQeWRYcT-tsyXDR96Ifw2q9vkYfbuROJGvmHc6TRrFAwQFA7UJKzByOCXC0Zp8Ed1bjwLq7eyutQ1onxTk9bq2K3a2fPP7Ph0NmOLabJ4U164mlZMb79bjpXbaCcgExqP0M7hx2nyqd9oIp7JqO8-3-ZVmRDAX7v9m-1yr-QVzChlqFB--6u3psriAdq1awzn0GDjIboli0fofsff4Vh1_hi924KK00PF6aHiAFScFipOCxVnGypP0OnxdHH0wbWMGq4Au6N2ufCEmMhYERUq4UXpJA6zmKaeIBzLUAVEZRJjkXmZDDOufJi7QuJA0ixMU9DVT9GoOC_kM-QEYOqnsYqoVGkk9e4rxkpBB1RKbSbvIb8bKyZsuXnNenLGurjCFdPjy_T4Mo8yGN89NO6fKU2xlWtbTzoRMGsuGjOQAXyufe5gS159V0FMwVjD0OBVJ0AGylbvoPFCnjcV8zHWBBQ0ivZv0OY5uruZKi_QqF438iW6I77XebU-sEj8CQYao_s |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-adaptive+attribute+weighting+for+Naive+Bayes+classification&rft.jtitle=Expert+systems+with+applications&rft.au=Wu%2C+Jia&rft.au=Pan%2C+Shirui&rft.au=Zhu%2C+Xingquan&rft.au=Cai%2C+Zhihua&rft.date=2015-02-15&rft.issn=0957-4174&rft.volume=42&rft.issue=3&rft.spage=1487&rft.epage=1502&rft_id=info:doi/10.1016%2Fj.eswa.2014.09.019&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |