On the universality of the quantum approximate optimization algorithm

The quantum approximate optimization algorithm (QAOA) is considered to be one of the most promising approaches towards using near-term quantum computers for practical application. In its original form, the algorithm applies two different Hamiltonians, called the mixer and the cost Hamiltonian, in al...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Quantum information processing Ročník 19; číslo 9
Hlavní autori: Morales, M. E. S., Biamonte, J. D., Zimborás, Z.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.09.2020
Springer Nature B.V
Predmet:
ISSN:1570-0755, 1573-1332
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The quantum approximate optimization algorithm (QAOA) is considered to be one of the most promising approaches towards using near-term quantum computers for practical application. In its original form, the algorithm applies two different Hamiltonians, called the mixer and the cost Hamiltonian, in alternation with the goal being to approach the ground state of the cost Hamiltonian. Recently, it has been suggested that one might use such a set-up as a parametric quantum circuit with possibly some other goal than reaching ground states. From this perspective, a recent work (Lloyd, arXiv:1812.11075 ) argued that for one-dimensional local cost Hamiltonians, composed of nearest neighbour ZZ terms, this set-up is quantum computationally universal and provides a universal gate set, i.e. all unitaries can be reached up to arbitrary precision. In the present paper, we complement this work by giving a complete proof and the precise conditions under which such a one-dimensional QAOA might produce a universal gate set. We further generalize this type of gate-set universality for certain cost Hamiltonians with ZZ and ZZZ terms arranged according to the adjacency structure of certain graphs and hypergraphs.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1570-0755
1573-1332
DOI:10.1007/s11128-020-02748-9