Approximation by bivariate generalized Bernstein–Schurer operators and associated GBS operators

We construct the bivariate form of Bernstein–Schurer operators based on parameter α . We establish the Voronovskaja-type theorem and give an estimate of the order of approximation with the help of Peetre’s K -functional of our newly defined operators. Moreover, we define the associated generalized B...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in difference equations Ročník 2020; číslo 1; s. 1 - 17
Hlavní autor: Mohiuddine, S. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2020
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1687-1847, 1687-1839, 1687-1847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We construct the bivariate form of Bernstein–Schurer operators based on parameter α . We establish the Voronovskaja-type theorem and give an estimate of the order of approximation with the help of Peetre’s K -functional of our newly defined operators. Moreover, we define the associated generalized Boolean sum (shortly, GBS) operators and estimate the rate of convergence by means of mixed modulus of smoothness. Finally, the order of approximation for Bögel differentiable function of our GBS operators is presented.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-020-03125-7