An accelerated viscosity forward-backward splitting algorithm with the linesearch process for convex minimization problems

In this paper, we consider and investigate a convex minimization problem of the sum of two convex functions in a Hilbert space. The forward-backward splitting algorithm is one of the popular optimization methods for approximating a minimizer of the function; however, the stepsize of this algorithm d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications Jg. 2021; H. 1; S. 1 - 19
Hauptverfasser: Suantai, Suthep, Jailoka, Pachara, Hanjing, Adisak
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 27.02.2021
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1029-242X, 1025-5834, 1029-242X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider and investigate a convex minimization problem of the sum of two convex functions in a Hilbert space. The forward-backward splitting algorithm is one of the popular optimization methods for approximating a minimizer of the function; however, the stepsize of this algorithm depends on the Lipschitz constant of the gradient of the function, which is not an easy work to find in general practice. By using a new modification of the linesearches of Cruz and Nghia [Optim. Methods Softw. 31:1209–1238, 2016 ] and Kankam et al. [Math. Methods Appl. Sci. 42:1352–1362, 2019 ] and an inertial technique, we introduce an accelerated viscosity-type algorithm without any Lipschitz continuity assumption on the gradient. A strong convergence result of the proposed algorithm is established under some control conditions. As applications, we apply our algorithm to solving image and signal recovery problems. Numerical experiments show that our method has a higher efficiency than the well-known methods in the literature.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-021-02571-5