On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria

In this paper, we consider a nonlinear sequential q -difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in difference equations Ročník 2021; číslo 1; s. 1 - 23
Hlavní autoři: Boutiara, Abdelatif, Etemad, Sina, Alzabut, Jehad, Hussain, Azhar, Subramanian, Muthaiah, Rezapour, Shahram
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 06.08.2021
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1687-1847, 1687-1839, 1687-1847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider a nonlinear sequential q -difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of the existence and uniqueness of solutions to a given Caputo fractional q -difference boundary value problem. Some pure techniques based on condensing operators and Sadovskii’s measure and the eigenvalue of an operator are employed to prove the main results. Also, the Ulam–Hyers stability and generalized Ulam–Hyers stability are investigated. We examine our results by providing two illustrative examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-021-03525-3