On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria

In this paper, we consider a nonlinear sequential q -difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of t...

Full description

Saved in:
Bibliographic Details
Published in:Advances in difference equations Vol. 2021; no. 1; pp. 1 - 23
Main Authors: Boutiara, Abdelatif, Etemad, Sina, Alzabut, Jehad, Hussain, Azhar, Subramanian, Muthaiah, Rezapour, Shahram
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 06.08.2021
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:1687-1847, 1687-1839, 1687-1847
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we consider a nonlinear sequential q -difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of the existence and uniqueness of solutions to a given Caputo fractional q -difference boundary value problem. Some pure techniques based on condensing operators and Sadovskii’s measure and the eigenvalue of an operator are employed to prove the main results. Also, the Ulam–Hyers stability and generalized Ulam–Hyers stability are investigated. We examine our results by providing two illustrative examples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-021-03525-3