On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria
In this paper, we consider a nonlinear sequential q -difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of t...
Uloženo v:
| Vydáno v: | Advances in difference equations Ročník 2021; číslo 1; s. 1 - 23 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
06.08.2021
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1687-1847, 1687-1839, 1687-1847 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we consider a nonlinear sequential
q
-difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of the existence and uniqueness of solutions to a given Caputo fractional
q
-difference boundary value problem. Some pure techniques based on condensing operators and Sadovskii’s measure and the eigenvalue of an operator are employed to prove the main results. Also, the Ulam–Hyers stability and generalized Ulam–Hyers stability are investigated. We examine our results by providing two illustrative examples. |
|---|---|
| AbstractList | Abstract In this paper, we consider a nonlinear sequential q-difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of the existence and uniqueness of solutions to a given Caputo fractional q-difference boundary value problem. Some pure techniques based on condensing operators and Sadovskii’s measure and the eigenvalue of an operator are employed to prove the main results. Also, the Ulam–Hyers stability and generalized Ulam–Hyers stability are investigated. We examine our results by providing two illustrative examples. In this paper, we consider a nonlinear sequential q-difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of the existence and uniqueness of solutions to a given Caputo fractional q-difference boundary value problem. Some pure techniques based on condensing operators and Sadovskii’s measure and the eigenvalue of an operator are employed to prove the main results. Also, the Ulam–Hyers stability and generalized Ulam–Hyers stability are investigated. We examine our results by providing two illustrative examples. In this paper, we consider a nonlinear sequential q -difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of the existence and uniqueness of solutions to a given Caputo fractional q -difference boundary value problem. Some pure techniques based on condensing operators and Sadovskii’s measure and the eigenvalue of an operator are employed to prove the main results. Also, the Ulam–Hyers stability and generalized Ulam–Hyers stability are investigated. We examine our results by providing two illustrative examples. |
| ArticleNumber | 367 |
| Author | Boutiara, Abdelatif Subramanian, Muthaiah Rezapour, Shahram Alzabut, Jehad Hussain, Azhar Etemad, Sina |
| Author_xml | – sequence: 1 givenname: Abdelatif surname: Boutiara fullname: Boutiara, Abdelatif organization: Laboratory of Mathematics and Applied Sciences, University of Ghardaia – sequence: 2 givenname: Sina surname: Etemad fullname: Etemad, Sina organization: Department of Mathematics, Azarbaijan Shahid Madani University – sequence: 3 givenname: Jehad surname: Alzabut fullname: Alzabut, Jehad organization: Department of Mathematics and General Sciences, Prince Sultan University, Group of mathematics, Faculty of Engineering, Ostim Technical University – sequence: 4 givenname: Azhar surname: Hussain fullname: Hussain, Azhar organization: Department of Mathematics, University of Sargodha – sequence: 5 givenname: Muthaiah surname: Subramanian fullname: Subramanian, Muthaiah organization: Department of Mathematics, KPR Institute of Engineering and Technology – sequence: 6 givenname: Shahram orcidid: 0000-0003-3463-2607 surname: Rezapour fullname: Rezapour, Shahram email: sh.rezapour@azaruniv.ac.ir, sh.rezapour@mail.cmuh.org.tw, rezapourshahram@yahoo.ca organization: Department of Mathematics, Azarbaijan Shahid Madani University, Department of Medical Research, China Medical University Hospital, China Medical University |
| BookMark | eNp9kc1u1DAUhS1UJNqhL8DKEutQ_8Sxs0QV0EqVuoG1de3cTD0K9tT2FPEovC2eCRWIRVeJ7j3f9dE5F-QspoiEvOPsA-dmuCpcDoPomOAdk0qoTr4i53wwuuOm12f__L8hF6XsGBNjb8w5-XUfKdB2bQkRIdOCjweMNcBC53TI3T6FWOmcwdeQYps-dlOYZ8wYPdImhuOchviUlqcQt23fANzmJk17zFBTLm1NXTrECfJP6lOcwhEqFJbUiB-hPtBSwYUl1LbPoWIO8Ja8nmEpePnnuyHfPn_6en3T3d1_ub3-eNf5Xoy108OgED3XCIr3_YBq4HJinuHM3OykMcyhQK95cz2C9hOOg9JSSeZAoJQbcrvenRLs7D6H782lTRDsaZDy1kKuwS9osR8N-hmEYbpHxxo_Om6MEI5p3d7dkPfrrX1OLcdS7a6F2GIrVihljJLypDKryudUSsbZ-lBPOdYMYbGc2WOpdi3VtlLtqVR7NCv-Q58NvwjJFSpNHLeY_7p6gfoNulm6zw |
| CitedBy_id | crossref_primary_10_1186_s13662_021_03576_6 crossref_primary_10_3846_mma_2025_22328 crossref_primary_10_3390_axioms12010049 crossref_primary_10_1007_s12346_024_01172_z crossref_primary_10_1007_s12346_022_00708_5 crossref_primary_10_3390_fractalfract5040235 crossref_primary_10_3390_fractalfract8010073 crossref_primary_10_1007_s12346_024_01127_4 crossref_primary_10_18514_MMN_2025_3784 crossref_primary_10_1186_s13661_023_01744_z crossref_primary_10_1088_1402_4896_ad185b crossref_primary_10_3390_math10111814 crossref_primary_10_2298_FIL2504389H crossref_primary_10_3390_fractalfract6110629 crossref_primary_10_1007_s12190_021_01650_6 crossref_primary_10_3390_sym14112273 crossref_primary_10_3390_fractalfract7020101 |
| Cites_doi | 10.3390/math7080659 10.1186/s13660-019-2257-6 10.1016/j.camwa.2010.11.012 10.1017/S0305004100045060 10.1007/s13398-021-01095-3 10.2307/2369887 10.1155/2013/543839 10.3390/sym13030469 10.1016/j.jfranklin.2014.01.020 10.1016/j.cnsns.2021.105844 10.2307/2370183 10.1016/j.chaos.2021.110668 10.1016/j.nonrwa.2012.08.001 10.1186/s13661-018-1008-9 10.2298/FIL1408719A 10.1007/978-3-642-69409-7 10.1186/s13662-020-02679-w 10.1002/mma.7210 10.1186/s13661-020-01361-0 10.3934/math.2020017 10.1007/BF01076087 10.1142/3779 10.2298/AADM0701311R 10.1007/978-0-387-21593-8 10.3390/sym11050686 10.2307/1968274 10.3906/mat-2010-70 10.1007/978-3-0348-0431-8 10.1016/j.cnsns.2011.01.026 10.1186/s13661-019-1194-0 10.1016/0893-9659(95)00093-3 10.1007/978-3-642-30898-7 10.2298/FIL1815265A 10.1002/mma.6652 10.1186/s13662-021-03253-8 10.1007/978-1-4612-4838-5 10.1155/2014/474138 10.2991/jnmp.2007.14.3.4 10.1016/j.chaos.2020.109705 10.1155/2020/4714032 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
| DOI | 10.1186/s13662-021-03525-3 |
| DatabaseName | Springer Nature OA/Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1687-1847 |
| EndPage | 23 |
| ExternalDocumentID | oai_doaj_org_article_e498ecfa28074eb0a2e9b18822b07761 10_1186_s13662_021_03525_3 |
| GroupedDBID | -A0 23M 2WC 3V. 4.4 40G 5GY 5VS 6J9 8FE 8FG 8R4 8R5 AAFWJ AAYZJ ABDBF ABJCF ABUWG ACGFO ACGFS ACIPV ACIWK ACUHS ADBBV ADINQ AEGXH AENEX AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DWQXO EBS ESX GNUQQ GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M0N M7S M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A UPT ~8M AAYXX CITATION OVT 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PUEGO Q9U |
| ID | FETCH-LOGICAL-c429t-7665eec17ea51446e5613d0c0ef0bfb3880be2ec71ffe9a7cde96573530ba2e33 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000683899500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-1847 1687-1839 |
| IngestDate | Fri Oct 03 12:51:48 EDT 2025 Tue Sep 30 18:36:55 EDT 2025 Tue Nov 18 22:20:52 EST 2025 Sat Nov 29 01:43:52 EST 2025 Fri Feb 21 02:47:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | difference equation operators 34A34 26A33 Existence-uniqueness Fractional Fixed point 34A08 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-7665eec17ea51446e5613d0c0ef0bfb3880be2ec71ffe9a7cde96573530ba2e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3463-2607 |
| OpenAccessLink | https://www.proquest.com/docview/2558853361?pq-origsite=%requestingapplication% |
| PQID | 2558853361 |
| PQPubID | 237355 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e498ecfa28074eb0a2e9b18822b07761 proquest_journals_2558853361 crossref_citationtrail_10_1186_s13662_021_03525_3 crossref_primary_10_1186_s13662_021_03525_3 springer_journals_10_1186_s13662_021_03525_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-06 |
| PublicationDateYYYYMMDD | 2021-08-06 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | Advances in difference equations |
| PublicationTitleAbbrev | Adv Differ Equ |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | AdiguzelR.S.AksoyU.KarapinarE.ErhanI.M.On the solutions of fractional differential equations via Geraghty type hybrid contractionMath. Methods Appl. Sci.202010.1002/mma.6652 RajkovicP.M.MarinkovicS.D.StankovicM.S.On q-analogues of Caputo derivative and Mittag-Lefler functionFract. Calc. Appl. Anal.200710435937323789851157.33325 RezapourS.ImranA.HussainA.MartínezF.EtemadS.KaabarM.K.A.Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPsSymmetry202113310.3390/sym13030469 AmeenR.JaradF.AbdeljawadT.Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditionsFilomat2018321552655274389857010.2298/FIL1815265A AdiguzelR.S.AksoyU.KarapinarE.ErhanI.M.On the solutions of fractional differential equations via Geraghty type hybrid contractionsAppl. Comput. Math.2021202313333 AydoganS.M.BaleanuD.MousalouA.RezapourS.On high order fractional integro-differential equations including the Caputo-Fabrizio derivativeBound. Value Probl.20182018380873810.1186/s13661-018-1008-91422.34019 BoutiaraA.GuerbatiK.BenbachirM.Caputo–Hadamard fractional differential equation with three-point boundary conditions in Banach spacesAIMS Math.201951259272414046610.3934/math.20200171463.34253 AbdeljawadT.BaleanuD.Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler functionCommun. Nonlinear Sci. Numer. Simul.2011161246824688282085710.1016/j.cnsns.2011.01.0261231.26006 HilferR.Applications of Fractional Calculus in Physics2000SingaporeWorld Scientific10.1142/3779 ThabetS.T.M.EtemadS.RezapourS.On a coupled Caputo conformable system of pantograph problemsTurk. J. Math.2021451496519424552410.3906/mat-2010-70 FerreiraR.A.C.Positive solutions for a class of boundary value problems with fractional q-differencesComput. Math. Appl.2011612367373275414410.1016/j.camwa.2010.11.0121216.39013 AnnabyM.H.MansourZ.S.q-Fractional Calculus and Equations2012BerlinSpringer10.1007/978-3-642-30898-7 GranasA.DugundjiJ.Fixed Point Theory2003New YorkSpringer10.1007/978-0-387-21593-8 GulR.SarwarM.ShahK.AbdeljawadT.JaradF.Qualitative analysis of implicit Dirichlet boundary value problem for Caputo–Fabrizio fractional differential equationsJ. Funct. Spaces20202020418366410.1155/2020/47140321456.35213 CarmichaelR.D.The general theory of linear q-difference equationsAm. J. Math.1912342147168150614510.2307/236988743.0411.02 AhmadB.NietoJ.J.AlsaediA.Al-HutamiH.Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditionsFilomat201428817191736336012010.2298/FIL1408719A06704888 AticiF.M.EloeP.W.Fractional q-calculus on a time scaleJ. Nonlinear Math. Phys.2007143341352235009410.2991/jnmp.2007.14.3.41157.81315 BoutiaraA.GuerbatiK.BenbachirM.Caputo type fractional differential equation with nonlocal Erdelyi–Kober type integral boundary conditions in Banach spacesSurv. Math. Appl.20201539941840997451463.34253 BoutiaraA.EtemadS.HussainA.RezapourS.The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving ϕ-Caputo fractional operatorsAdv. Differ. Equ.20212021420903610.1186/s13662-021-03253-8 MillerK.S.RossB.An Introduction to the Fractional Calculus and Fractional Differential Equations1993New YorkWiley0789.26002 EtemadS.RezapourS.SameiM.E.α-ψ-contractions and solutions of a q-fractional differential inclusion with three-point boundary value conditions via computational resultsAdv. Differ. Equ.20202020409958610.1186/s13662-020-02679-w JacksonF.H.q-difference equationsComput. Math. Appl.191032430531410.2307/237018341.0502.01 AdiguzelR.S.AksoyU.KarapinarE.ErhanI.M.Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditionsRev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.20212021428054510.1007/s13398-021-01095-3 ButtR.I.AbdeljawadT.AlqudahM.A.Ur RehmanM.Ulam stability of Caputo q-fractional delay difference equation: q-fractional Gronwall inequality approachJ. Inequal. Appl.20192019406205110.1186/s13660-019-2257-6 MohammadiH.KumarS.RezapourS.EtemadS.A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal controlChaos Solitons Fractals2021144420513710.1016/j.chaos.2021.110668 AbdeljawadT.AlzabutJ.The q-fractional analogue for Gronwall-type inequalityJ. Funct. Spaces20132013309537610.1155/2013/5438391290.39005 AbdeljawadT.AgarwalR.P.KarapinarE.KumariP.S.Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric spaceSymmetry201911510.3390/sym110506861425.47016 BaleanuD.RezapourS.SaberpourZ.On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivationBound. Value Probl.20192019394242110.1186/s13661-019-1194-0 RusI.A.Ulam stabilities of ordinary differential equations in a Banach spaceCarpath. J. Math.201026110310726767241224.34164 EtemadS.EttefaghM.RezapourS.On the existence of solutions for nonlinear fractional q-difference equations with q-integral boundary conditionsJ. Adv. Math. Stud.20158226528534084131400.39007 KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.45003 O’ReganD.Fixed-point theory for the sum of two operatorsAppl. Math. Lett.19969118138958910.1016/0893-9659(95)00093-30858.34049 JaradF.AbdeljawadT.BaleanuD.Stability of q-fractional non-autonomous systemsNonlinear Anal., Real World Appl.2013141780784296987210.1016/j.nonrwa.2012.08.0011258.34014 ZeidlerE.Nonlinear Functional Analysis and Its Application: Fixed Point Theorems1986New YorkSpringer10.1007/978-1-4612-4838-5 AhmadB.NietoJ.J.AlsaediA.Al-HutamiH.Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditionsJ. Franklin Inst.2014351528902909319192410.1016/j.jfranklin.2014.01.0201372.45007 ErnstT.A Comprehensive Treatment of q-Calculus2012BaselBirkhäuser10.1007/978-3-0348-0431-8 AgarwalR.P.Certain fractional q-integrals and q-derivativesMath. Proc. Camb. Philos. Soc.196966236537024738910.1017/S03050041000450600179.16901 AdamsC.R.On the linear ordinary q-difference equationAnn. Math.1910301195205150287610.2307/196827455.0263.01 RajkovicP.M.MarinkovicS.D.StankovicM.S.Fractional integrals and derivatives in q-calculusAppl. Anal. Discrete Math.200711311323231660710.2298/AADM0701311R1199.33013 SadovskiiB.N.A fixed point principleFunct. Anal. Appl.1967115115321130210.1007/BF010760870165.49102 BaleanuD.JajarmiA.MohammadiH.RezapourS.A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivativeChaos Solitons Fractals2020134407032710.1016/j.chaos.2020.109705 AsawasamritS.TariboonJ.NtouyasS.K.Existence of solutions for fractional q-integro-difference equations with nonlocal fractional q-integral conditionsAbstr. Appl. Anal.2014201410.1155/2014/47413807022445 BaleanuD.EtemadS.RezapourS.A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditionsBound. Value Probl.20202020407920810.1186/s13661-020-01361-0 AhmadI.NietoJ.J.Ur RahmanG.ShahK.Fractional boundary value problems with multiply orders of fractional derivatives and integralsElectron. J. Differ. Equ.20202020132 AhmadB.EtemadS.EttefaghM.RezapourS.On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditionsBull. Math. Soc. Sci. Math. Roum.201659(107)211913435589561374.39010 KrasnoselskiiM.A.ZabreikoP.P.Geometrical Methods of Nonlinear Analysis1984New YorkSpringer10.1007/978-3-642-69409-7 EtemadS.NtouyasS.K.AhmadB.Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different ordersMathematics20167810.3390/math7080659 BaleanuD.EtemadS.MohammadiH.RezapourS.A novel modeling of boundary value problems on the glucose graphCommun. Nonlinear Sci. Numer. Simul.2021100424781310.1016/j.cnsns.2021.10584407348028 AbdoM.S.AbdeljawadT.ShahK.AliS.M.On nonlinear coupled evolution system with nonlocal subsidiary conditions under fractal-fractional order derivativeMath. Methods Appl. Sci.20214486581660010.1002/mma.7210 S. Etemad (3525_CR34) 2015; 8 S. Etemad (3525_CR33) 2020; 2020 R. Hilfer (3525_CR1) 2000 A. Boutiara (3525_CR8) 2020; 15 D. Baleanu (3525_CR15) 2020; 2020 A.A. Kilbas (3525_CR2) 2006 R.S. Adiguzel (3525_CR11) 2021; 20 T. Abdeljawad (3525_CR16) 2019; 11 F.H. Jackson (3525_CR21) 1910; 32 R.S. Adiguzel (3525_CR13) 2021; 2021 I.A. Rus (3525_CR49) 2010; 26 R.A.C. Ferreira (3525_CR19) 2011; 61 T. Abdeljawad (3525_CR30) 2011; 16 B. Ahmad (3525_CR29) 2016; 59(107) P.M. Rajkovic (3525_CR38) 2007; 10 H. Mohammadi (3525_CR10) 2021; 144 F.M. Atici (3525_CR24) 2007; 14 B. Ahmad (3525_CR37) 2014; 351 S. Rezapour (3525_CR35) 2021; 13 S. Asawasamrit (3525_CR32) 2014; 2014 R. Gul (3525_CR18) 2020; 2020 D. Baleanu (3525_CR14) 2019; 2019 M.H. Annaby (3525_CR25) 2012 B.N. Sadovskii (3525_CR43) 1967; 1 A. Granas (3525_CR41) 2003 A. Boutiara (3525_CR6) 2019; 5 B. Ahmad (3525_CR36) 2014; 28 R. Ameen (3525_CR46) 2018; 32 D. O’Regan (3525_CR45) 1996; 9 E. Zeidler (3525_CR42) 1986 M.S. Abdo (3525_CR17) 2021; 44 F. Jarad (3525_CR26) 2013; 14 D. Baleanu (3525_CR7) 2020; 134 D. Baleanu (3525_CR4) 2021; 100 S.T.M. Thabet (3525_CR5) 2021; 45 M.A. Krasnoselskii (3525_CR44) 1984 C.R. Adams (3525_CR22) 1910; 30 S. Etemad (3525_CR31) 2016; 7 R.I. Butt (3525_CR28) 2019; 2019 R.P. Agarwal (3525_CR39) 1969; 66 A. Boutiara (3525_CR48) 2021; 2021 K.S. Miller (3525_CR3) 1993 I. Ahmad (3525_CR47) 2020; 2020 T. Ernst (3525_CR20) 2012 P.M. Rajkovic (3525_CR40) 2007; 1 S.M. Aydogan (3525_CR9) 2018; 2018 R.S. Adiguzel (3525_CR12) 2020 R.D. Carmichael (3525_CR23) 1912; 34 T. Abdeljawad (3525_CR27) 2013; 2013 |
| References_xml | – reference: BaleanuD.RezapourS.SaberpourZ.On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivationBound. Value Probl.20192019394242110.1186/s13661-019-1194-0 – reference: BoutiaraA.GuerbatiK.BenbachirM.Caputo–Hadamard fractional differential equation with three-point boundary conditions in Banach spacesAIMS Math.201951259272414046610.3934/math.20200171463.34253 – reference: BaleanuD.JajarmiA.MohammadiH.RezapourS.A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivativeChaos Solitons Fractals2020134407032710.1016/j.chaos.2020.109705 – reference: SadovskiiB.N.A fixed point principleFunct. Anal. Appl.1967115115321130210.1007/BF010760870165.49102 – reference: HilferR.Applications of Fractional Calculus in Physics2000SingaporeWorld Scientific10.1142/3779 – reference: AbdeljawadT.AlzabutJ.The q-fractional analogue for Gronwall-type inequalityJ. Funct. Spaces20132013309537610.1155/2013/5438391290.39005 – reference: AmeenR.JaradF.AbdeljawadT.Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditionsFilomat2018321552655274389857010.2298/FIL1815265A – reference: FerreiraR.A.C.Positive solutions for a class of boundary value problems with fractional q-differencesComput. Math. Appl.2011612367373275414410.1016/j.camwa.2010.11.0121216.39013 – reference: AnnabyM.H.MansourZ.S.q-Fractional Calculus and Equations2012BerlinSpringer10.1007/978-3-642-30898-7 – reference: AbdoM.S.AbdeljawadT.ShahK.AliS.M.On nonlinear coupled evolution system with nonlocal subsidiary conditions under fractal-fractional order derivativeMath. Methods Appl. Sci.20214486581660010.1002/mma.7210 – reference: BaleanuD.EtemadS.RezapourS.A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditionsBound. Value Probl.20202020407920810.1186/s13661-020-01361-0 – reference: AbdeljawadT.AgarwalR.P.KarapinarE.KumariP.S.Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric spaceSymmetry201911510.3390/sym110506861425.47016 – reference: RajkovicP.M.MarinkovicS.D.StankovicM.S.On q-analogues of Caputo derivative and Mittag-Lefler functionFract. Calc. Appl. Anal.200710435937323789851157.33325 – reference: AdamsC.R.On the linear ordinary q-difference equationAnn. Math.1910301195205150287610.2307/196827455.0263.01 – reference: RajkovicP.M.MarinkovicS.D.StankovicM.S.Fractional integrals and derivatives in q-calculusAppl. Anal. Discrete Math.200711311323231660710.2298/AADM0701311R1199.33013 – reference: AhmadB.NietoJ.J.AlsaediA.Al-HutamiH.Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditionsJ. Franklin Inst.2014351528902909319192410.1016/j.jfranklin.2014.01.0201372.45007 – reference: AticiF.M.EloeP.W.Fractional q-calculus on a time scaleJ. Nonlinear Math. Phys.2007143341352235009410.2991/jnmp.2007.14.3.41157.81315 – reference: EtemadS.RezapourS.SameiM.E.α-ψ-contractions and solutions of a q-fractional differential inclusion with three-point boundary value conditions via computational resultsAdv. Differ. Equ.20202020409958610.1186/s13662-020-02679-w – reference: RezapourS.ImranA.HussainA.MartínezF.EtemadS.KaabarM.K.A.Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPsSymmetry202113310.3390/sym13030469 – reference: AdiguzelR.S.AksoyU.KarapinarE.ErhanI.M.On the solutions of fractional differential equations via Geraghty type hybrid contractionMath. Methods Appl. Sci.202010.1002/mma.6652 – reference: MillerK.S.RossB.An Introduction to the Fractional Calculus and Fractional Differential Equations1993New YorkWiley0789.26002 – reference: AhmadB.EtemadS.EttefaghM.RezapourS.On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditionsBull. Math. Soc. Sci. Math. Roum.201659(107)211913435589561374.39010 – reference: AhmadI.NietoJ.J.Ur RahmanG.ShahK.Fractional boundary value problems with multiply orders of fractional derivatives and integralsElectron. J. Differ. Equ.20202020132 – reference: AdiguzelR.S.AksoyU.KarapinarE.ErhanI.M.On the solutions of fractional differential equations via Geraghty type hybrid contractionsAppl. Comput. Math.2021202313333 – reference: CarmichaelR.D.The general theory of linear q-difference equationsAm. J. Math.1912342147168150614510.2307/236988743.0411.02 – reference: ButtR.I.AbdeljawadT.AlqudahM.A.Ur RehmanM.Ulam stability of Caputo q-fractional delay difference equation: q-fractional Gronwall inequality approachJ. Inequal. Appl.20192019406205110.1186/s13660-019-2257-6 – reference: JacksonF.H.q-difference equationsComput. Math. Appl.191032430531410.2307/237018341.0502.01 – reference: BoutiaraA.EtemadS.HussainA.RezapourS.The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving ϕ-Caputo fractional operatorsAdv. Differ. Equ.20212021420903610.1186/s13662-021-03253-8 – reference: AbdeljawadT.BaleanuD.Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler functionCommun. Nonlinear Sci. Numer. Simul.2011161246824688282085710.1016/j.cnsns.2011.01.0261231.26006 – reference: AydoganS.M.BaleanuD.MousalouA.RezapourS.On high order fractional integro-differential equations including the Caputo-Fabrizio derivativeBound. Value Probl.20182018380873810.1186/s13661-018-1008-91422.34019 – reference: AdiguzelR.S.AksoyU.KarapinarE.ErhanI.M.Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditionsRev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.20212021428054510.1007/s13398-021-01095-3 – reference: JaradF.AbdeljawadT.BaleanuD.Stability of q-fractional non-autonomous systemsNonlinear Anal., Real World Appl.2013141780784296987210.1016/j.nonrwa.2012.08.0011258.34014 – reference: KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.45003 – reference: MohammadiH.KumarS.RezapourS.EtemadS.A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal controlChaos Solitons Fractals2021144420513710.1016/j.chaos.2021.110668 – reference: EtemadS.NtouyasS.K.AhmadB.Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different ordersMathematics20167810.3390/math7080659 – reference: KrasnoselskiiM.A.ZabreikoP.P.Geometrical Methods of Nonlinear Analysis1984New YorkSpringer10.1007/978-3-642-69409-7 – reference: ZeidlerE.Nonlinear Functional Analysis and Its Application: Fixed Point Theorems1986New YorkSpringer10.1007/978-1-4612-4838-5 – reference: RusI.A.Ulam stabilities of ordinary differential equations in a Banach spaceCarpath. J. Math.201026110310726767241224.34164 – reference: AhmadB.NietoJ.J.AlsaediA.Al-HutamiH.Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditionsFilomat201428817191736336012010.2298/FIL1408719A06704888 – reference: AgarwalR.P.Certain fractional q-integrals and q-derivativesMath. Proc. Camb. Philos. Soc.196966236537024738910.1017/S03050041000450600179.16901 – reference: BoutiaraA.GuerbatiK.BenbachirM.Caputo type fractional differential equation with nonlocal Erdelyi–Kober type integral boundary conditions in Banach spacesSurv. Math. Appl.20201539941840997451463.34253 – reference: BaleanuD.EtemadS.MohammadiH.RezapourS.A novel modeling of boundary value problems on the glucose graphCommun. Nonlinear Sci. Numer. Simul.2021100424781310.1016/j.cnsns.2021.10584407348028 – reference: O’ReganD.Fixed-point theory for the sum of two operatorsAppl. Math. Lett.19969118138958910.1016/0893-9659(95)00093-30858.34049 – reference: ErnstT.A Comprehensive Treatment of q-Calculus2012BaselBirkhäuser10.1007/978-3-0348-0431-8 – reference: AsawasamritS.TariboonJ.NtouyasS.K.Existence of solutions for fractional q-integro-difference equations with nonlocal fractional q-integral conditionsAbstr. Appl. Anal.2014201410.1155/2014/47413807022445 – reference: ThabetS.T.M.EtemadS.RezapourS.On a coupled Caputo conformable system of pantograph problemsTurk. J. Math.2021451496519424552410.3906/mat-2010-70 – reference: GulR.SarwarM.ShahK.AbdeljawadT.JaradF.Qualitative analysis of implicit Dirichlet boundary value problem for Caputo–Fabrizio fractional differential equationsJ. Funct. Spaces20202020418366410.1155/2020/47140321456.35213 – reference: GranasA.DugundjiJ.Fixed Point Theory2003New YorkSpringer10.1007/978-0-387-21593-8 – reference: EtemadS.EttefaghM.RezapourS.On the existence of solutions for nonlinear fractional q-difference equations with q-integral boundary conditionsJ. Adv. Math. Stud.20158226528534084131400.39007 – volume: 7 issue: 8 year: 2016 ident: 3525_CR31 publication-title: Mathematics doi: 10.3390/math7080659 – volume: 2019 year: 2019 ident: 3525_CR28 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-019-2257-6 – volume: 61 start-page: 367 issue: 2 year: 2011 ident: 3525_CR19 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.11.012 – volume: 66 start-page: 365 issue: 2 year: 1969 ident: 3525_CR39 publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S0305004100045060 – volume: 2020 issue: 132 year: 2020 ident: 3525_CR47 publication-title: Electron. J. Differ. Equ. – volume: 2021 year: 2021 ident: 3525_CR13 publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. doi: 10.1007/s13398-021-01095-3 – volume: 34 start-page: 147 issue: 2 year: 1912 ident: 3525_CR23 publication-title: Am. J. Math. doi: 10.2307/2369887 – volume: 2013 year: 2013 ident: 3525_CR27 publication-title: J. Funct. Spaces doi: 10.1155/2013/543839 – volume: 13 issue: 3 year: 2021 ident: 3525_CR35 publication-title: Symmetry doi: 10.3390/sym13030469 – volume: 351 start-page: 2890 issue: 5 year: 2014 ident: 3525_CR37 publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2014.01.020 – volume: 10 start-page: 359 issue: 4 year: 2007 ident: 3525_CR38 publication-title: Fract. Calc. Appl. Anal. – volume: 100 year: 2021 ident: 3525_CR4 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2021.105844 – volume: 32 start-page: 305 issue: 4 year: 1910 ident: 3525_CR21 publication-title: Comput. Math. Appl. doi: 10.2307/2370183 – volume: 144 year: 2021 ident: 3525_CR10 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.110668 – volume: 14 start-page: 780 issue: 1 year: 2013 ident: 3525_CR26 publication-title: Nonlinear Anal., Real World Appl. doi: 10.1016/j.nonrwa.2012.08.001 – volume: 2018 year: 2018 ident: 3525_CR9 publication-title: Bound. Value Probl. doi: 10.1186/s13661-018-1008-9 – volume: 28 start-page: 1719 issue: 8 year: 2014 ident: 3525_CR36 publication-title: Filomat doi: 10.2298/FIL1408719A – volume-title: Geometrical Methods of Nonlinear Analysis year: 1984 ident: 3525_CR44 doi: 10.1007/978-3-642-69409-7 – volume: 2020 year: 2020 ident: 3525_CR33 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-020-02679-w – volume: 44 start-page: 6581 issue: 8 year: 2021 ident: 3525_CR17 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.7210 – volume: 2020 year: 2020 ident: 3525_CR15 publication-title: Bound. Value Probl. doi: 10.1186/s13661-020-01361-0 – volume: 5 start-page: 259 issue: 1 year: 2019 ident: 3525_CR6 publication-title: AIMS Math. doi: 10.3934/math.2020017 – volume: 8 start-page: 265 issue: 2 year: 2015 ident: 3525_CR34 publication-title: J. Adv. Math. Stud. – volume: 1 start-page: 151 year: 1967 ident: 3525_CR43 publication-title: Funct. Anal. Appl. doi: 10.1007/BF01076087 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 3525_CR2 – volume-title: Applications of Fractional Calculus in Physics year: 2000 ident: 3525_CR1 doi: 10.1142/3779 – volume: 1 start-page: 311 issue: 1 year: 2007 ident: 3525_CR40 publication-title: Appl. Anal. Discrete Math. doi: 10.2298/AADM0701311R – volume-title: Fixed Point Theory year: 2003 ident: 3525_CR41 doi: 10.1007/978-0-387-21593-8 – volume: 11 issue: 5 year: 2019 ident: 3525_CR16 publication-title: Symmetry doi: 10.3390/sym11050686 – volume: 26 start-page: 103 issue: 1 year: 2010 ident: 3525_CR49 publication-title: Carpath. J. Math. – volume: 59(107) start-page: 119 issue: 2 year: 2016 ident: 3525_CR29 publication-title: Bull. Math. Soc. Sci. Math. Roum. – volume: 30 start-page: 195 issue: 1 year: 1910 ident: 3525_CR22 publication-title: Ann. Math. doi: 10.2307/1968274 – volume: 45 start-page: 496 issue: 1 year: 2021 ident: 3525_CR5 publication-title: Turk. J. Math. doi: 10.3906/mat-2010-70 – volume-title: A Comprehensive Treatment of q-Calculus year: 2012 ident: 3525_CR20 doi: 10.1007/978-3-0348-0431-8 – volume: 16 start-page: 4682 issue: 12 year: 2011 ident: 3525_CR30 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.01.026 – volume: 2019 year: 2019 ident: 3525_CR14 publication-title: Bound. Value Probl. doi: 10.1186/s13661-019-1194-0 – volume: 9 start-page: 1 issue: 1 year: 1996 ident: 3525_CR45 publication-title: Appl. Math. Lett. doi: 10.1016/0893-9659(95)00093-3 – volume-title: An Introduction to the Fractional Calculus and Fractional Differential Equations year: 1993 ident: 3525_CR3 – volume-title: q-Fractional Calculus and Equations year: 2012 ident: 3525_CR25 doi: 10.1007/978-3-642-30898-7 – volume: 15 start-page: 399 year: 2020 ident: 3525_CR8 publication-title: Surv. Math. Appl. – volume: 32 start-page: 5265 issue: 15 year: 2018 ident: 3525_CR46 publication-title: Filomat doi: 10.2298/FIL1815265A – year: 2020 ident: 3525_CR12 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6652 – volume: 2021 year: 2021 ident: 3525_CR48 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-021-03253-8 – volume-title: Nonlinear Functional Analysis and Its Application: Fixed Point Theorems year: 1986 ident: 3525_CR42 doi: 10.1007/978-1-4612-4838-5 – volume: 2014 year: 2014 ident: 3525_CR32 publication-title: Abstr. Appl. Anal. doi: 10.1155/2014/474138 – volume: 14 start-page: 341 issue: 3 year: 2007 ident: 3525_CR24 publication-title: J. Nonlinear Math. Phys. doi: 10.2991/jnmp.2007.14.3.4 – volume: 134 year: 2020 ident: 3525_CR7 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109705 – volume: 20 start-page: 313 issue: 2 year: 2021 ident: 3525_CR11 publication-title: Appl. Comput. Math. – volume: 2020 year: 2020 ident: 3525_CR18 publication-title: J. Funct. Spaces doi: 10.1155/2020/4714032 |
| SSID | ssj0029488 |
| Score | 2.3562186 |
| Snippet | In this paper, we consider a nonlinear sequential
q
-difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value... In this paper, we consider a nonlinear sequential q-difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value... Abstract In this paper, we consider a nonlinear sequential q-difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Analysis Boundary conditions Boundary value problems Calculus Difference and Functional Equations Difference equations Eigenvalues Existence-uniqueness Fixed point Fixed Point Theory and Applications to Fractional Ordinary and Partial Difference and Differential Equations Fractional q-difference equation Functional Analysis Integrals Investigations Mathematics Mathematics and Statistics Operators (mathematics) Ordinary Differential Equations Partial Differential Equations q-operators Stability criteria |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTwMhECWm8aAH42esVsPBm5Iuu13YParReKoeNPFGgA5Jk2Zbt9XEn-K_dYBdrSbqxSsDG5YZYB4Mbwg5EW5Ucsg1SwdCsEFuC4Z-HDBuDXAtccMXLiSbkMNh8fhY3i2l-vIxYZEeOA5cHwZlAdbpwNoCJtEplIbj91LjmWgC8Elk2YKpBmqVaJftE5lC9Oc8EyJlPhwh8H-y7Ms2FNj6v7iY325Fw2ZzvUk2Gi-RnsfebZEVqLbJ-hJ34A55u62oplVkutA1jTHROF8n1GFzNpuOqwV1dXy4gKVPrE2GYoFi5aASOq5wffKHCihvqCMmdDqDcPs-RzE1IfFS_UoROY9igBfVkym28Ge4FL3LEF-L8to_Zx7rXfJwfXV_ecOaPAvM4m60YFKIHMByCTr38BA8qBglNgGXGGc8XYyBFKzk2MtSSzuCUuQyy7PEoDqybI908Hdhn1CNHkhuPekYd4jcpBHSrxsmMenApQV0CW-HXdmGhNznwpioAEYKoaKqFKpKBVWprEtOP9rMIgXHr7UvvDY_anr67FCARqUao1J_GVWX9FpbUM2cnisEXwU6N5kXn7X28Sn-uUsH_9GlQ7KWBvstWCJ6pLOon-GIrNqXxXheHwfrfwdoAQll priority: 102 providerName: Directory of Open Access Journals |
| Title | On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria |
| URI | https://link.springer.com/article/10.1186/s13662-021-03525-3 https://www.proquest.com/docview/2558853361 https://doaj.org/article/e498ecfa28074eb0a2e9b18822b07761 |
| Volume | 2021 |
| WOSCitedRecordID | wos000683899500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-1847 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0029488 issn: 1687-1847 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QCHlqdYKCsfuIHVOA87OSFatQIhloiHVLhYtjNGK62SbbIg8VP6bxk7zpYi0QuXHDJ25GjG8_L4G0KeC9dUHArN0lwIlhe2ZOjHAePWANcSDb5wodmEXCzKs7Oqjgm3IZZVTjoxKOqmsz5Hfoiub4mmJRP81fqc-a5R_nQ1ttC4SXY9SgIPpXuftgFXlYe-k1zgRvKewHRpphSHA8-ESJkvUAiIoCy7YpgCfv8Vp_Ovc9Jgfk73_3fhd8ledDzp61FS7pEb0N4nd_6AI3xALj60VNN2BM_QPR3LrFEFrKjD6WzdLdsNdf14FwLfnrOpv4oFioMDl-myRZXn8xRIj2gUK9qtIRzoD0imJvRy6n9RDMabsWaM6lWHM3xamKLDGkp2kd77G9JL_ZB8OT35fPyGxdYNzKKB2zApRAFguQRd-IgTfJzSJDYBlxhnPAKNgRSs5LjKSkvbQCUKmRVZYnQKWfaI7ODvwmNCNTo1hfU4ZtxhMCiNkF4VmcSkuUtLmBE-8U3ZiGvu22usVIhvSqFGXivktQq8VtmMvNjOWY-oHteOPvLisB3pEbnDi67_ruIGV5BXJVinA7oQmAT_ojIc5T41HjGJz8jBJB4qqolBXcrGjLycBOyS_O8lPbn-a0_J7TSIdskScUB2Nv0PeEZu2Z-b5dDPye7RyaL-OA_5B3y-k2weNg4-6-Ib0uu37-uvvwGF-x_C |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQceCO2FPABTmA1zsNODgjxqlptWTgUqTdje8dopVWyzW5B_Sn8CX4jM06ypUj01gPX2I7y-GY8Y4-_j7FnKkwrCYUVaa6UyAtfCozjQEjvQFqNE74KUWxCTybl0VH1eYP9Gs7CUFnl4BOjo542ntbIdzD0LXFqyZR8vTgWpBpFu6uDhEYHizGc_sCUbflq_z3-3-dpuvvh8N2e6FUFhEffuxJaqQLASw22oGQIKISeJj6BkLjgiBzFQQpeyxCgstpPoVKFzooscTYFWgBFl38lz0pNdjXWYp3gVXnUuZQKDZcij-GQTql2ljJTKhVUEBEZSEV2biKMegHngty_9mXjdLd763_7ULfZzT6w5m86S7jDNqC-y278Qbd4j_38VHPL644cxLa8KyNHFzfnAYeLRTOrVzy03VkPvHosBv0YDxw7RxTzWY0undZhsL1n25jzZgGxYGGJzdxFrar2lPuGKgLIsrmdNziClr05BuSxJBnbWzoBPrP32ZdL-TYP2Ca-Ljxk3GLQVnjiaZMBk13tlCZX6xKX5iEtYcTkgBPje952kg-Zm5i_lcp02DKILROxZbIRe7Ees-hYSy7s_Zbgt-5JjOPxQtN-M70DM5BXJfhgI3sSuATfonIS7Tp1xAglR2x7gKPp3eDSnGFxxF4OgD5r_vcjbV18t6fs2t7hxwNzsD8ZP2LX02hWpUjUNttctSfwmF3131ezZfskGihnXy8b6L8BSLt3vw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqghAcyrNiSwEf4ATWxnk4yQEhoKyoipY9gFRxMbZ3jFZaJdtkAfWn8Ff4dcw4yZYi0VsPXGM7yuOb8Yw9_j7Gnig_LyVkRsSpUiLNXCEwjgMhnQVpcpzwlQ9iE_l0Whwfl7Mt9ms4C0NllYNPDI56XjtaIx9j6Fvg1JIoOfZ9WcTsYPJydSJIQYp2Wgc5jQ4iR3D6A9O39sXhAf7rp3E8efvxzTvRKwwIh354LXKlMgAnczAZJUZA4fQ8chH4yHpLRCkWYnC59B5Kk7s5lCrLkyyJrImBFkPR_V_JMcekcsJZ9nmT7JVp0LyUCo2YopDhwE6hxq1MlIoFFUcENlKRnJsUg3bAuYD3rz3aMPVNbv7PH-0W2-kDbv6qs5DbbAuqO-zGHzSMd9nPDxU3vOpIQ0zDu_JydH1L7nG4WNWLas19050BwasnYtCVccCxc0A3X1To6ml9Btt7Fo4lr1cQChlabOY2aFg1p9zVVClAFs_NssYRtBzOMVAPpcrY3tDJ8IW5xz5dyrfZZdv4unCfcYPBXOaIv016TIJzq3JywTaycerjAkZMDpjRrudzJ1mRpQ55XaF0hzONONMBZzoZsWebMauOzeTC3q8JipuexEQeLtTNV907Ng1pWYDzJrAqgY3wLUor0d5jS0xRcsT2B2jq3j22-gyXI_Z8APdZ878fae_iuz1m1xDf-v3h9OgBux4HCytEpPbZ9rr5Bg_ZVfd9vWibR8FWOfty2Tj_DehogOM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+nonlinear+sequential+four-point+fractional+q-difference+equation+involving+q-integral+operators+in+boundary+conditions+along+with+stability+criteria&rft.jtitle=Advances+in+difference+equations&rft.au=Boutiara%2C+Abdelatif&rft.au=Etemad%2C+Sina&rft.au=Alzabut%2C+Jehad&rft.au=Hussain%2C+Azhar&rft.date=2021-08-06&rft.issn=1687-1847&rft.eissn=1687-1847&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-021-03525-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13662_021_03525_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon |