On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria

In this paper, we consider a nonlinear sequential q -difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in difference equations Ročník 2021; číslo 1; s. 1 - 23
Hlavní autoři: Boutiara, Abdelatif, Etemad, Sina, Alzabut, Jehad, Hussain, Azhar, Subramanian, Muthaiah, Rezapour, Shahram
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 06.08.2021
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1687-1847, 1687-1839, 1687-1847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we consider a nonlinear sequential q -difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of the existence and uniqueness of solutions to a given Caputo fractional q -difference boundary value problem. Some pure techniques based on condensing operators and Sadovskii’s measure and the eigenvalue of an operator are employed to prove the main results. Also, the Ulam–Hyers stability and generalized Ulam–Hyers stability are investigated. We examine our results by providing two illustrative examples.
AbstractList Abstract In this paper, we consider a nonlinear sequential q-difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of the existence and uniqueness of solutions to a given Caputo fractional q-difference boundary value problem. Some pure techniques based on condensing operators and Sadovskii’s measure and the eigenvalue of an operator are employed to prove the main results. Also, the Ulam–Hyers stability and generalized Ulam–Hyers stability are investigated. We examine our results by providing two illustrative examples.
In this paper, we consider a nonlinear sequential q-difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of the existence and uniqueness of solutions to a given Caputo fractional q-difference boundary value problem. Some pure techniques based on condensing operators and Sadovskii’s measure and the eigenvalue of an operator are employed to prove the main results. Also, the Ulam–Hyers stability and generalized Ulam–Hyers stability are investigated. We examine our results by providing two illustrative examples.
In this paper, we consider a nonlinear sequential q -difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of the existence and uniqueness of solutions to a given Caputo fractional q -difference boundary value problem. Some pure techniques based on condensing operators and Sadovskii’s measure and the eigenvalue of an operator are employed to prove the main results. Also, the Ulam–Hyers stability and generalized Ulam–Hyers stability are investigated. We examine our results by providing two illustrative examples.
ArticleNumber 367
Author Boutiara, Abdelatif
Subramanian, Muthaiah
Rezapour, Shahram
Alzabut, Jehad
Hussain, Azhar
Etemad, Sina
Author_xml – sequence: 1
  givenname: Abdelatif
  surname: Boutiara
  fullname: Boutiara, Abdelatif
  organization: Laboratory of Mathematics and Applied Sciences, University of Ghardaia
– sequence: 2
  givenname: Sina
  surname: Etemad
  fullname: Etemad, Sina
  organization: Department of Mathematics, Azarbaijan Shahid Madani University
– sequence: 3
  givenname: Jehad
  surname: Alzabut
  fullname: Alzabut, Jehad
  organization: Department of Mathematics and General Sciences, Prince Sultan University, Group of mathematics, Faculty of Engineering, Ostim Technical University
– sequence: 4
  givenname: Azhar
  surname: Hussain
  fullname: Hussain, Azhar
  organization: Department of Mathematics, University of Sargodha
– sequence: 5
  givenname: Muthaiah
  surname: Subramanian
  fullname: Subramanian, Muthaiah
  organization: Department of Mathematics, KPR Institute of Engineering and Technology
– sequence: 6
  givenname: Shahram
  orcidid: 0000-0003-3463-2607
  surname: Rezapour
  fullname: Rezapour, Shahram
  email: sh.rezapour@azaruniv.ac.ir, sh.rezapour@mail.cmuh.org.tw, rezapourshahram@yahoo.ca
  organization: Department of Mathematics, Azarbaijan Shahid Madani University, Department of Medical Research, China Medical University Hospital, China Medical University
BookMark eNp9kc1u1DAUhS1UJNqhL8DKEutQ_8Sxs0QV0EqVuoG1de3cTD0K9tT2FPEovC2eCRWIRVeJ7j3f9dE5F-QspoiEvOPsA-dmuCpcDoPomOAdk0qoTr4i53wwuuOm12f__L8hF6XsGBNjb8w5-XUfKdB2bQkRIdOCjweMNcBC53TI3T6FWOmcwdeQYps-dlOYZ8wYPdImhuOchviUlqcQt23fANzmJk17zFBTLm1NXTrECfJP6lOcwhEqFJbUiB-hPtBSwYUl1LbPoWIO8Ja8nmEpePnnuyHfPn_6en3T3d1_ub3-eNf5Xoy108OgED3XCIr3_YBq4HJinuHM3OykMcyhQK95cz2C9hOOg9JSSeZAoJQbcrvenRLs7D6H782lTRDsaZDy1kKuwS9osR8N-hmEYbpHxxo_Om6MEI5p3d7dkPfrrX1OLcdS7a6F2GIrVihljJLypDKryudUSsbZ-lBPOdYMYbGc2WOpdi3VtlLtqVR7NCv-Q58NvwjJFSpNHLeY_7p6gfoNulm6zw
CitedBy_id crossref_primary_10_1186_s13662_021_03576_6
crossref_primary_10_3846_mma_2025_22328
crossref_primary_10_3390_axioms12010049
crossref_primary_10_1007_s12346_024_01172_z
crossref_primary_10_1007_s12346_022_00708_5
crossref_primary_10_3390_fractalfract5040235
crossref_primary_10_3390_fractalfract8010073
crossref_primary_10_1007_s12346_024_01127_4
crossref_primary_10_18514_MMN_2025_3784
crossref_primary_10_1186_s13661_023_01744_z
crossref_primary_10_1088_1402_4896_ad185b
crossref_primary_10_3390_math10111814
crossref_primary_10_2298_FIL2504389H
crossref_primary_10_3390_fractalfract6110629
crossref_primary_10_1007_s12190_021_01650_6
crossref_primary_10_3390_sym14112273
crossref_primary_10_3390_fractalfract7020101
Cites_doi 10.3390/math7080659
10.1186/s13660-019-2257-6
10.1016/j.camwa.2010.11.012
10.1017/S0305004100045060
10.1007/s13398-021-01095-3
10.2307/2369887
10.1155/2013/543839
10.3390/sym13030469
10.1016/j.jfranklin.2014.01.020
10.1016/j.cnsns.2021.105844
10.2307/2370183
10.1016/j.chaos.2021.110668
10.1016/j.nonrwa.2012.08.001
10.1186/s13661-018-1008-9
10.2298/FIL1408719A
10.1007/978-3-642-69409-7
10.1186/s13662-020-02679-w
10.1002/mma.7210
10.1186/s13661-020-01361-0
10.3934/math.2020017
10.1007/BF01076087
10.1142/3779
10.2298/AADM0701311R
10.1007/978-0-387-21593-8
10.3390/sym11050686
10.2307/1968274
10.3906/mat-2010-70
10.1007/978-3-0348-0431-8
10.1016/j.cnsns.2011.01.026
10.1186/s13661-019-1194-0
10.1016/0893-9659(95)00093-3
10.1007/978-3-642-30898-7
10.2298/FIL1815265A
10.1002/mma.6652
10.1186/s13662-021-03253-8
10.1007/978-1-4612-4838-5
10.1155/2014/474138
10.2991/jnmp.2007.14.3.4
10.1016/j.chaos.2020.109705
10.1155/2020/4714032
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.1186/s13662-021-03525-3
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 23
ExternalDocumentID oai_doaj_org_article_e498ecfa28074eb0a2e9b18822b07761
10_1186_s13662_021_03525_3
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c429t-7665eec17ea51446e5613d0c0ef0bfb3880be2ec71ffe9a7cde96573530ba2e33
IEDL.DBID M7S
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000683899500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1847
1687-1839
IngestDate Fri Oct 03 12:51:48 EDT 2025
Tue Sep 30 18:36:55 EDT 2025
Tue Nov 18 22:20:52 EST 2025
Sat Nov 29 01:43:52 EST 2025
Fri Feb 21 02:47:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords difference equation
operators
34A34
26A33
Existence-uniqueness
Fractional
Fixed point
34A08
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-7665eec17ea51446e5613d0c0ef0bfb3880be2ec71ffe9a7cde96573530ba2e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3463-2607
OpenAccessLink https://www.proquest.com/docview/2558853361?pq-origsite=%requestingapplication%
PQID 2558853361
PQPubID 237355
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_e498ecfa28074eb0a2e9b18822b07761
proquest_journals_2558853361
crossref_citationtrail_10_1186_s13662_021_03525_3
crossref_primary_10_1186_s13662_021_03525_3
springer_journals_10_1186_s13662_021_03525_3
PublicationCentury 2000
PublicationDate 2021-08-06
PublicationDateYYYYMMDD 2021-08-06
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-06
  day: 06
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References AdiguzelR.S.AksoyU.KarapinarE.ErhanI.M.On the solutions of fractional differential equations via Geraghty type hybrid contractionMath. Methods Appl. Sci.202010.1002/mma.6652
RajkovicP.M.MarinkovicS.D.StankovicM.S.On q-analogues of Caputo derivative and Mittag-Lefler functionFract. Calc. Appl. Anal.200710435937323789851157.33325
RezapourS.ImranA.HussainA.MartínezF.EtemadS.KaabarM.K.A.Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPsSymmetry202113310.3390/sym13030469
AmeenR.JaradF.AbdeljawadT.Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditionsFilomat2018321552655274389857010.2298/FIL1815265A
AdiguzelR.S.AksoyU.KarapinarE.ErhanI.M.On the solutions of fractional differential equations via Geraghty type hybrid contractionsAppl. Comput. Math.2021202313333
AydoganS.M.BaleanuD.MousalouA.RezapourS.On high order fractional integro-differential equations including the Caputo-Fabrizio derivativeBound. Value Probl.20182018380873810.1186/s13661-018-1008-91422.34019
BoutiaraA.GuerbatiK.BenbachirM.Caputo–Hadamard fractional differential equation with three-point boundary conditions in Banach spacesAIMS Math.201951259272414046610.3934/math.20200171463.34253
AbdeljawadT.BaleanuD.Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler functionCommun. Nonlinear Sci. Numer. Simul.2011161246824688282085710.1016/j.cnsns.2011.01.0261231.26006
HilferR.Applications of Fractional Calculus in Physics2000SingaporeWorld Scientific10.1142/3779
ThabetS.T.M.EtemadS.RezapourS.On a coupled Caputo conformable system of pantograph problemsTurk. J. Math.2021451496519424552410.3906/mat-2010-70
FerreiraR.A.C.Positive solutions for a class of boundary value problems with fractional q-differencesComput. Math. Appl.2011612367373275414410.1016/j.camwa.2010.11.0121216.39013
AnnabyM.H.MansourZ.S.q-Fractional Calculus and Equations2012BerlinSpringer10.1007/978-3-642-30898-7
GranasA.DugundjiJ.Fixed Point Theory2003New YorkSpringer10.1007/978-0-387-21593-8
GulR.SarwarM.ShahK.AbdeljawadT.JaradF.Qualitative analysis of implicit Dirichlet boundary value problem for Caputo–Fabrizio fractional differential equationsJ. Funct. Spaces20202020418366410.1155/2020/47140321456.35213
CarmichaelR.D.The general theory of linear q-difference equationsAm. J. Math.1912342147168150614510.2307/236988743.0411.02
AhmadB.NietoJ.J.AlsaediA.Al-HutamiH.Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditionsFilomat201428817191736336012010.2298/FIL1408719A06704888
AticiF.M.EloeP.W.Fractional q-calculus on a time scaleJ. Nonlinear Math. Phys.2007143341352235009410.2991/jnmp.2007.14.3.41157.81315
BoutiaraA.GuerbatiK.BenbachirM.Caputo type fractional differential equation with nonlocal Erdelyi–Kober type integral boundary conditions in Banach spacesSurv. Math. Appl.20201539941840997451463.34253
BoutiaraA.EtemadS.HussainA.RezapourS.The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving ϕ-Caputo fractional operatorsAdv. Differ. Equ.20212021420903610.1186/s13662-021-03253-8
MillerK.S.RossB.An Introduction to the Fractional Calculus and Fractional Differential Equations1993New YorkWiley0789.26002
EtemadS.RezapourS.SameiM.E.α-ψ-contractions and solutions of a q-fractional differential inclusion with three-point boundary value conditions via computational resultsAdv. Differ. Equ.20202020409958610.1186/s13662-020-02679-w
JacksonF.H.q-difference equationsComput. Math. Appl.191032430531410.2307/237018341.0502.01
AdiguzelR.S.AksoyU.KarapinarE.ErhanI.M.Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditionsRev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.20212021428054510.1007/s13398-021-01095-3
ButtR.I.AbdeljawadT.AlqudahM.A.Ur RehmanM.Ulam stability of Caputo q-fractional delay difference equation: q-fractional Gronwall inequality approachJ. Inequal. Appl.20192019406205110.1186/s13660-019-2257-6
MohammadiH.KumarS.RezapourS.EtemadS.A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal controlChaos Solitons Fractals2021144420513710.1016/j.chaos.2021.110668
AbdeljawadT.AlzabutJ.The q-fractional analogue for Gronwall-type inequalityJ. Funct. Spaces20132013309537610.1155/2013/5438391290.39005
AbdeljawadT.AgarwalR.P.KarapinarE.KumariP.S.Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric spaceSymmetry201911510.3390/sym110506861425.47016
BaleanuD.RezapourS.SaberpourZ.On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivationBound. Value Probl.20192019394242110.1186/s13661-019-1194-0
RusI.A.Ulam stabilities of ordinary differential equations in a Banach spaceCarpath. J. Math.201026110310726767241224.34164
EtemadS.EttefaghM.RezapourS.On the existence of solutions for nonlinear fractional q-difference equations with q-integral boundary conditionsJ. Adv. Math. Stud.20158226528534084131400.39007
KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.45003
O’ReganD.Fixed-point theory for the sum of two operatorsAppl. Math. Lett.19969118138958910.1016/0893-9659(95)00093-30858.34049
JaradF.AbdeljawadT.BaleanuD.Stability of q-fractional non-autonomous systemsNonlinear Anal., Real World Appl.2013141780784296987210.1016/j.nonrwa.2012.08.0011258.34014
ZeidlerE.Nonlinear Functional Analysis and Its Application: Fixed Point Theorems1986New YorkSpringer10.1007/978-1-4612-4838-5
AhmadB.NietoJ.J.AlsaediA.Al-HutamiH.Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditionsJ. Franklin Inst.2014351528902909319192410.1016/j.jfranklin.2014.01.0201372.45007
ErnstT.A Comprehensive Treatment of q-Calculus2012BaselBirkhäuser10.1007/978-3-0348-0431-8
AgarwalR.P.Certain fractional q-integrals and q-derivativesMath. Proc. Camb. Philos. Soc.196966236537024738910.1017/S03050041000450600179.16901
AdamsC.R.On the linear ordinary q-difference equationAnn. Math.1910301195205150287610.2307/196827455.0263.01
RajkovicP.M.MarinkovicS.D.StankovicM.S.Fractional integrals and derivatives in q-calculusAppl. Anal. Discrete Math.200711311323231660710.2298/AADM0701311R1199.33013
SadovskiiB.N.A fixed point principleFunct. Anal. Appl.1967115115321130210.1007/BF010760870165.49102
BaleanuD.JajarmiA.MohammadiH.RezapourS.A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivativeChaos Solitons Fractals2020134407032710.1016/j.chaos.2020.109705
AsawasamritS.TariboonJ.NtouyasS.K.Existence of solutions for fractional q-integro-difference equations with nonlocal fractional q-integral conditionsAbstr. Appl. Anal.2014201410.1155/2014/47413807022445
BaleanuD.EtemadS.RezapourS.A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditionsBound. Value Probl.20202020407920810.1186/s13661-020-01361-0
AhmadI.NietoJ.J.Ur RahmanG.ShahK.Fractional boundary value problems with multiply orders of fractional derivatives and integralsElectron. J. Differ. Equ.20202020132
AhmadB.EtemadS.EttefaghM.RezapourS.On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditionsBull. Math. Soc. Sci. Math. Roum.201659(107)211913435589561374.39010
KrasnoselskiiM.A.ZabreikoP.P.Geometrical Methods of Nonlinear Analysis1984New YorkSpringer10.1007/978-3-642-69409-7
EtemadS.NtouyasS.K.AhmadB.Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different ordersMathematics20167810.3390/math7080659
BaleanuD.EtemadS.MohammadiH.RezapourS.A novel modeling of boundary value problems on the glucose graphCommun. Nonlinear Sci. Numer. Simul.2021100424781310.1016/j.cnsns.2021.10584407348028
AbdoM.S.AbdeljawadT.ShahK.AliS.M.On nonlinear coupled evolution system with nonlocal subsidiary conditions under fractal-fractional order derivativeMath. Methods Appl. Sci.20214486581660010.1002/mma.7210
S. Etemad (3525_CR34) 2015; 8
S. Etemad (3525_CR33) 2020; 2020
R. Hilfer (3525_CR1) 2000
A. Boutiara (3525_CR8) 2020; 15
D. Baleanu (3525_CR15) 2020; 2020
A.A. Kilbas (3525_CR2) 2006
R.S. Adiguzel (3525_CR11) 2021; 20
T. Abdeljawad (3525_CR16) 2019; 11
F.H. Jackson (3525_CR21) 1910; 32
R.S. Adiguzel (3525_CR13) 2021; 2021
I.A. Rus (3525_CR49) 2010; 26
R.A.C. Ferreira (3525_CR19) 2011; 61
T. Abdeljawad (3525_CR30) 2011; 16
B. Ahmad (3525_CR29) 2016; 59(107)
P.M. Rajkovic (3525_CR38) 2007; 10
H. Mohammadi (3525_CR10) 2021; 144
F.M. Atici (3525_CR24) 2007; 14
B. Ahmad (3525_CR37) 2014; 351
S. Rezapour (3525_CR35) 2021; 13
S. Asawasamrit (3525_CR32) 2014; 2014
R. Gul (3525_CR18) 2020; 2020
D. Baleanu (3525_CR14) 2019; 2019
M.H. Annaby (3525_CR25) 2012
B.N. Sadovskii (3525_CR43) 1967; 1
A. Granas (3525_CR41) 2003
A. Boutiara (3525_CR6) 2019; 5
B. Ahmad (3525_CR36) 2014; 28
R. Ameen (3525_CR46) 2018; 32
D. O’Regan (3525_CR45) 1996; 9
E. Zeidler (3525_CR42) 1986
M.S. Abdo (3525_CR17) 2021; 44
F. Jarad (3525_CR26) 2013; 14
D. Baleanu (3525_CR7) 2020; 134
D. Baleanu (3525_CR4) 2021; 100
S.T.M. Thabet (3525_CR5) 2021; 45
M.A. Krasnoselskii (3525_CR44) 1984
C.R. Adams (3525_CR22) 1910; 30
S. Etemad (3525_CR31) 2016; 7
R.I. Butt (3525_CR28) 2019; 2019
R.P. Agarwal (3525_CR39) 1969; 66
A. Boutiara (3525_CR48) 2021; 2021
K.S. Miller (3525_CR3) 1993
I. Ahmad (3525_CR47) 2020; 2020
T. Ernst (3525_CR20) 2012
P.M. Rajkovic (3525_CR40) 2007; 1
S.M. Aydogan (3525_CR9) 2018; 2018
R.S. Adiguzel (3525_CR12) 2020
R.D. Carmichael (3525_CR23) 1912; 34
T. Abdeljawad (3525_CR27) 2013; 2013
References_xml – reference: BaleanuD.RezapourS.SaberpourZ.On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivationBound. Value Probl.20192019394242110.1186/s13661-019-1194-0
– reference: BoutiaraA.GuerbatiK.BenbachirM.Caputo–Hadamard fractional differential equation with three-point boundary conditions in Banach spacesAIMS Math.201951259272414046610.3934/math.20200171463.34253
– reference: BaleanuD.JajarmiA.MohammadiH.RezapourS.A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivativeChaos Solitons Fractals2020134407032710.1016/j.chaos.2020.109705
– reference: SadovskiiB.N.A fixed point principleFunct. Anal. Appl.1967115115321130210.1007/BF010760870165.49102
– reference: HilferR.Applications of Fractional Calculus in Physics2000SingaporeWorld Scientific10.1142/3779
– reference: AbdeljawadT.AlzabutJ.The q-fractional analogue for Gronwall-type inequalityJ. Funct. Spaces20132013309537610.1155/2013/5438391290.39005
– reference: AmeenR.JaradF.AbdeljawadT.Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditionsFilomat2018321552655274389857010.2298/FIL1815265A
– reference: FerreiraR.A.C.Positive solutions for a class of boundary value problems with fractional q-differencesComput. Math. Appl.2011612367373275414410.1016/j.camwa.2010.11.0121216.39013
– reference: AnnabyM.H.MansourZ.S.q-Fractional Calculus and Equations2012BerlinSpringer10.1007/978-3-642-30898-7
– reference: AbdoM.S.AbdeljawadT.ShahK.AliS.M.On nonlinear coupled evolution system with nonlocal subsidiary conditions under fractal-fractional order derivativeMath. Methods Appl. Sci.20214486581660010.1002/mma.7210
– reference: BaleanuD.EtemadS.RezapourS.A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditionsBound. Value Probl.20202020407920810.1186/s13661-020-01361-0
– reference: AbdeljawadT.AgarwalR.P.KarapinarE.KumariP.S.Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric spaceSymmetry201911510.3390/sym110506861425.47016
– reference: RajkovicP.M.MarinkovicS.D.StankovicM.S.On q-analogues of Caputo derivative and Mittag-Lefler functionFract. Calc. Appl. Anal.200710435937323789851157.33325
– reference: AdamsC.R.On the linear ordinary q-difference equationAnn. Math.1910301195205150287610.2307/196827455.0263.01
– reference: RajkovicP.M.MarinkovicS.D.StankovicM.S.Fractional integrals and derivatives in q-calculusAppl. Anal. Discrete Math.200711311323231660710.2298/AADM0701311R1199.33013
– reference: AhmadB.NietoJ.J.AlsaediA.Al-HutamiH.Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditionsJ. Franklin Inst.2014351528902909319192410.1016/j.jfranklin.2014.01.0201372.45007
– reference: AticiF.M.EloeP.W.Fractional q-calculus on a time scaleJ. Nonlinear Math. Phys.2007143341352235009410.2991/jnmp.2007.14.3.41157.81315
– reference: EtemadS.RezapourS.SameiM.E.α-ψ-contractions and solutions of a q-fractional differential inclusion with three-point boundary value conditions via computational resultsAdv. Differ. Equ.20202020409958610.1186/s13662-020-02679-w
– reference: RezapourS.ImranA.HussainA.MartínezF.EtemadS.KaabarM.K.A.Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPsSymmetry202113310.3390/sym13030469
– reference: AdiguzelR.S.AksoyU.KarapinarE.ErhanI.M.On the solutions of fractional differential equations via Geraghty type hybrid contractionMath. Methods Appl. Sci.202010.1002/mma.6652
– reference: MillerK.S.RossB.An Introduction to the Fractional Calculus and Fractional Differential Equations1993New YorkWiley0789.26002
– reference: AhmadB.EtemadS.EttefaghM.RezapourS.On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditionsBull. Math. Soc. Sci. Math. Roum.201659(107)211913435589561374.39010
– reference: AhmadI.NietoJ.J.Ur RahmanG.ShahK.Fractional boundary value problems with multiply orders of fractional derivatives and integralsElectron. J. Differ. Equ.20202020132
– reference: AdiguzelR.S.AksoyU.KarapinarE.ErhanI.M.On the solutions of fractional differential equations via Geraghty type hybrid contractionsAppl. Comput. Math.2021202313333
– reference: CarmichaelR.D.The general theory of linear q-difference equationsAm. J. Math.1912342147168150614510.2307/236988743.0411.02
– reference: ButtR.I.AbdeljawadT.AlqudahM.A.Ur RehmanM.Ulam stability of Caputo q-fractional delay difference equation: q-fractional Gronwall inequality approachJ. Inequal. Appl.20192019406205110.1186/s13660-019-2257-6
– reference: JacksonF.H.q-difference equationsComput. Math. Appl.191032430531410.2307/237018341.0502.01
– reference: BoutiaraA.EtemadS.HussainA.RezapourS.The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving ϕ-Caputo fractional operatorsAdv. Differ. Equ.20212021420903610.1186/s13662-021-03253-8
– reference: AbdeljawadT.BaleanuD.Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler functionCommun. Nonlinear Sci. Numer. Simul.2011161246824688282085710.1016/j.cnsns.2011.01.0261231.26006
– reference: AydoganS.M.BaleanuD.MousalouA.RezapourS.On high order fractional integro-differential equations including the Caputo-Fabrizio derivativeBound. Value Probl.20182018380873810.1186/s13661-018-1008-91422.34019
– reference: AdiguzelR.S.AksoyU.KarapinarE.ErhanI.M.Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditionsRev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.20212021428054510.1007/s13398-021-01095-3
– reference: JaradF.AbdeljawadT.BaleanuD.Stability of q-fractional non-autonomous systemsNonlinear Anal., Real World Appl.2013141780784296987210.1016/j.nonrwa.2012.08.0011258.34014
– reference: KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.45003
– reference: MohammadiH.KumarS.RezapourS.EtemadS.A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal controlChaos Solitons Fractals2021144420513710.1016/j.chaos.2021.110668
– reference: EtemadS.NtouyasS.K.AhmadB.Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different ordersMathematics20167810.3390/math7080659
– reference: KrasnoselskiiM.A.ZabreikoP.P.Geometrical Methods of Nonlinear Analysis1984New YorkSpringer10.1007/978-3-642-69409-7
– reference: ZeidlerE.Nonlinear Functional Analysis and Its Application: Fixed Point Theorems1986New YorkSpringer10.1007/978-1-4612-4838-5
– reference: RusI.A.Ulam stabilities of ordinary differential equations in a Banach spaceCarpath. J. Math.201026110310726767241224.34164
– reference: AhmadB.NietoJ.J.AlsaediA.Al-HutamiH.Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditionsFilomat201428817191736336012010.2298/FIL1408719A06704888
– reference: AgarwalR.P.Certain fractional q-integrals and q-derivativesMath. Proc. Camb. Philos. Soc.196966236537024738910.1017/S03050041000450600179.16901
– reference: BoutiaraA.GuerbatiK.BenbachirM.Caputo type fractional differential equation with nonlocal Erdelyi–Kober type integral boundary conditions in Banach spacesSurv. Math. Appl.20201539941840997451463.34253
– reference: BaleanuD.EtemadS.MohammadiH.RezapourS.A novel modeling of boundary value problems on the glucose graphCommun. Nonlinear Sci. Numer. Simul.2021100424781310.1016/j.cnsns.2021.10584407348028
– reference: O’ReganD.Fixed-point theory for the sum of two operatorsAppl. Math. Lett.19969118138958910.1016/0893-9659(95)00093-30858.34049
– reference: ErnstT.A Comprehensive Treatment of q-Calculus2012BaselBirkhäuser10.1007/978-3-0348-0431-8
– reference: AsawasamritS.TariboonJ.NtouyasS.K.Existence of solutions for fractional q-integro-difference equations with nonlocal fractional q-integral conditionsAbstr. Appl. Anal.2014201410.1155/2014/47413807022445
– reference: ThabetS.T.M.EtemadS.RezapourS.On a coupled Caputo conformable system of pantograph problemsTurk. J. Math.2021451496519424552410.3906/mat-2010-70
– reference: GulR.SarwarM.ShahK.AbdeljawadT.JaradF.Qualitative analysis of implicit Dirichlet boundary value problem for Caputo–Fabrizio fractional differential equationsJ. Funct. Spaces20202020418366410.1155/2020/47140321456.35213
– reference: GranasA.DugundjiJ.Fixed Point Theory2003New YorkSpringer10.1007/978-0-387-21593-8
– reference: EtemadS.EttefaghM.RezapourS.On the existence of solutions for nonlinear fractional q-difference equations with q-integral boundary conditionsJ. Adv. Math. Stud.20158226528534084131400.39007
– volume: 7
  issue: 8
  year: 2016
  ident: 3525_CR31
  publication-title: Mathematics
  doi: 10.3390/math7080659
– volume: 2019
  year: 2019
  ident: 3525_CR28
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-2257-6
– volume: 61
  start-page: 367
  issue: 2
  year: 2011
  ident: 3525_CR19
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.11.012
– volume: 66
  start-page: 365
  issue: 2
  year: 1969
  ident: 3525_CR39
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100045060
– volume: 2020
  issue: 132
  year: 2020
  ident: 3525_CR47
  publication-title: Electron. J. Differ. Equ.
– volume: 2021
  year: 2021
  ident: 3525_CR13
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.
  doi: 10.1007/s13398-021-01095-3
– volume: 34
  start-page: 147
  issue: 2
  year: 1912
  ident: 3525_CR23
  publication-title: Am. J. Math.
  doi: 10.2307/2369887
– volume: 2013
  year: 2013
  ident: 3525_CR27
  publication-title: J. Funct. Spaces
  doi: 10.1155/2013/543839
– volume: 13
  issue: 3
  year: 2021
  ident: 3525_CR35
  publication-title: Symmetry
  doi: 10.3390/sym13030469
– volume: 351
  start-page: 2890
  issue: 5
  year: 2014
  ident: 3525_CR37
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2014.01.020
– volume: 10
  start-page: 359
  issue: 4
  year: 2007
  ident: 3525_CR38
  publication-title: Fract. Calc. Appl. Anal.
– volume: 100
  year: 2021
  ident: 3525_CR4
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2021.105844
– volume: 32
  start-page: 305
  issue: 4
  year: 1910
  ident: 3525_CR21
  publication-title: Comput. Math. Appl.
  doi: 10.2307/2370183
– volume: 144
  year: 2021
  ident: 3525_CR10
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.110668
– volume: 14
  start-page: 780
  issue: 1
  year: 2013
  ident: 3525_CR26
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2012.08.001
– volume: 2018
  year: 2018
  ident: 3525_CR9
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-018-1008-9
– volume: 28
  start-page: 1719
  issue: 8
  year: 2014
  ident: 3525_CR36
  publication-title: Filomat
  doi: 10.2298/FIL1408719A
– volume-title: Geometrical Methods of Nonlinear Analysis
  year: 1984
  ident: 3525_CR44
  doi: 10.1007/978-3-642-69409-7
– volume: 2020
  year: 2020
  ident: 3525_CR33
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-020-02679-w
– volume: 44
  start-page: 6581
  issue: 8
  year: 2021
  ident: 3525_CR17
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.7210
– volume: 2020
  year: 2020
  ident: 3525_CR15
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-020-01361-0
– volume: 5
  start-page: 259
  issue: 1
  year: 2019
  ident: 3525_CR6
  publication-title: AIMS Math.
  doi: 10.3934/math.2020017
– volume: 8
  start-page: 265
  issue: 2
  year: 2015
  ident: 3525_CR34
  publication-title: J. Adv. Math. Stud.
– volume: 1
  start-page: 151
  year: 1967
  ident: 3525_CR43
  publication-title: Funct. Anal. Appl.
  doi: 10.1007/BF01076087
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 3525_CR2
– volume-title: Applications of Fractional Calculus in Physics
  year: 2000
  ident: 3525_CR1
  doi: 10.1142/3779
– volume: 1
  start-page: 311
  issue: 1
  year: 2007
  ident: 3525_CR40
  publication-title: Appl. Anal. Discrete Math.
  doi: 10.2298/AADM0701311R
– volume-title: Fixed Point Theory
  year: 2003
  ident: 3525_CR41
  doi: 10.1007/978-0-387-21593-8
– volume: 11
  issue: 5
  year: 2019
  ident: 3525_CR16
  publication-title: Symmetry
  doi: 10.3390/sym11050686
– volume: 26
  start-page: 103
  issue: 1
  year: 2010
  ident: 3525_CR49
  publication-title: Carpath. J. Math.
– volume: 59(107)
  start-page: 119
  issue: 2
  year: 2016
  ident: 3525_CR29
  publication-title: Bull. Math. Soc. Sci. Math. Roum.
– volume: 30
  start-page: 195
  issue: 1
  year: 1910
  ident: 3525_CR22
  publication-title: Ann. Math.
  doi: 10.2307/1968274
– volume: 45
  start-page: 496
  issue: 1
  year: 2021
  ident: 3525_CR5
  publication-title: Turk. J. Math.
  doi: 10.3906/mat-2010-70
– volume-title: A Comprehensive Treatment of q-Calculus
  year: 2012
  ident: 3525_CR20
  doi: 10.1007/978-3-0348-0431-8
– volume: 16
  start-page: 4682
  issue: 12
  year: 2011
  ident: 3525_CR30
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.01.026
– volume: 2019
  year: 2019
  ident: 3525_CR14
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-019-1194-0
– volume: 9
  start-page: 1
  issue: 1
  year: 1996
  ident: 3525_CR45
  publication-title: Appl. Math. Lett.
  doi: 10.1016/0893-9659(95)00093-3
– volume-title: An Introduction to the Fractional Calculus and Fractional Differential Equations
  year: 1993
  ident: 3525_CR3
– volume-title: q-Fractional Calculus and Equations
  year: 2012
  ident: 3525_CR25
  doi: 10.1007/978-3-642-30898-7
– volume: 15
  start-page: 399
  year: 2020
  ident: 3525_CR8
  publication-title: Surv. Math. Appl.
– volume: 32
  start-page: 5265
  issue: 15
  year: 2018
  ident: 3525_CR46
  publication-title: Filomat
  doi: 10.2298/FIL1815265A
– year: 2020
  ident: 3525_CR12
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6652
– volume: 2021
  year: 2021
  ident: 3525_CR48
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-021-03253-8
– volume-title: Nonlinear Functional Analysis and Its Application: Fixed Point Theorems
  year: 1986
  ident: 3525_CR42
  doi: 10.1007/978-1-4612-4838-5
– volume: 2014
  year: 2014
  ident: 3525_CR32
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/2014/474138
– volume: 14
  start-page: 341
  issue: 3
  year: 2007
  ident: 3525_CR24
  publication-title: J. Nonlinear Math. Phys.
  doi: 10.2991/jnmp.2007.14.3.4
– volume: 134
  year: 2020
  ident: 3525_CR7
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109705
– volume: 20
  start-page: 313
  issue: 2
  year: 2021
  ident: 3525_CR11
  publication-title: Appl. Comput. Math.
– volume: 2020
  year: 2020
  ident: 3525_CR18
  publication-title: J. Funct. Spaces
  doi: 10.1155/2020/4714032
SSID ssj0029488
Score 2.3562186
Snippet In this paper, we consider a nonlinear sequential q -difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value...
In this paper, we consider a nonlinear sequential q-difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value...
Abstract In this paper, we consider a nonlinear sequential q-difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Boundary conditions
Boundary value problems
Calculus
Difference and Functional Equations
Difference equations
Eigenvalues
Existence-uniqueness
Fixed point
Fixed Point Theory and Applications to Fractional Ordinary and Partial Difference and Differential Equations
Fractional q-difference equation
Functional Analysis
Integrals
Investigations
Mathematics
Mathematics and Statistics
Operators (mathematics)
Ordinary Differential Equations
Partial Differential Equations
q-operators
Stability criteria
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTwMhECWm8aAH42esVsPBm5Iuu13YParReKoeNPFGgA5Jk2Zbt9XEn-K_dYBdrSbqxSsDG5YZYB4Mbwg5EW5Ucsg1SwdCsEFuC4Z-HDBuDXAtccMXLiSbkMNh8fhY3i2l-vIxYZEeOA5cHwZlAdbpwNoCJtEplIbj91LjmWgC8Elk2YKpBmqVaJftE5lC9Oc8EyJlPhwh8H-y7Ms2FNj6v7iY325Fw2ZzvUk2Gi-RnsfebZEVqLbJ-hJ34A55u62oplVkutA1jTHROF8n1GFzNpuOqwV1dXy4gKVPrE2GYoFi5aASOq5wffKHCihvqCMmdDqDcPs-RzE1IfFS_UoROY9igBfVkym28Ge4FL3LEF-L8to_Zx7rXfJwfXV_ecOaPAvM4m60YFKIHMByCTr38BA8qBglNgGXGGc8XYyBFKzk2MtSSzuCUuQyy7PEoDqybI908Hdhn1CNHkhuPekYd4jcpBHSrxsmMenApQV0CW-HXdmGhNznwpioAEYKoaKqFKpKBVWprEtOP9rMIgXHr7UvvDY_anr67FCARqUao1J_GVWX9FpbUM2cnisEXwU6N5kXn7X28Sn-uUsH_9GlQ7KWBvstWCJ6pLOon-GIrNqXxXheHwfrfwdoAQll
  priority: 102
  providerName: Directory of Open Access Journals
Title On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria
URI https://link.springer.com/article/10.1186/s13662-021-03525-3
https://www.proquest.com/docview/2558853361
https://doaj.org/article/e498ecfa28074eb0a2e9b18822b07761
Volume 2021
WOSCitedRecordID wos000683899500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QCHlqdYKCsfuIHVOA87OSFatQIhloiHVLhYtjNGK62SbbIg8VP6bxk7zpYi0QuXHDJ25GjG8_L4G0KeC9dUHArN0lwIlhe2ZOjHAePWANcSDb5wodmEXCzKs7Oqjgm3IZZVTjoxKOqmsz5Hfoiub4mmJRP81fqc-a5R_nQ1ttC4SXY9SgIPpXuftgFXlYe-k1zgRvKewHRpphSHA8-ESJkvUAiIoCy7YpgCfv8Vp_Ovc9Jgfk73_3fhd8ledDzp61FS7pEb0N4nd_6AI3xALj60VNN2BM_QPR3LrFEFrKjD6WzdLdsNdf14FwLfnrOpv4oFioMDl-myRZXn8xRIj2gUK9qtIRzoD0imJvRy6n9RDMabsWaM6lWHM3xamKLDGkp2kd77G9JL_ZB8OT35fPyGxdYNzKKB2zApRAFguQRd-IgTfJzSJDYBlxhnPAKNgRSs5LjKSkvbQCUKmRVZYnQKWfaI7ODvwmNCNTo1hfU4ZtxhMCiNkF4VmcSkuUtLmBE-8U3ZiGvu22usVIhvSqFGXivktQq8VtmMvNjOWY-oHteOPvLisB3pEbnDi67_ruIGV5BXJVinA7oQmAT_ojIc5T41HjGJz8jBJB4qqolBXcrGjLycBOyS_O8lPbn-a0_J7TSIdskScUB2Nv0PeEZu2Z-b5dDPye7RyaL-OA_5B3y-k2weNg4-6-Ib0uu37-uvvwGF-x_C
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQceCO2FPABTmA1zsNODgjxqlptWTgUqTdje8dopVWyzW5B_Sn8CX4jM06ypUj01gPX2I7y-GY8Y4-_j7FnKkwrCYUVaa6UyAtfCozjQEjvQFqNE74KUWxCTybl0VH1eYP9Gs7CUFnl4BOjo542ntbIdzD0LXFqyZR8vTgWpBpFu6uDhEYHizGc_sCUbflq_z3-3-dpuvvh8N2e6FUFhEffuxJaqQLASw22oGQIKISeJj6BkLjgiBzFQQpeyxCgstpPoVKFzooscTYFWgBFl38lz0pNdjXWYp3gVXnUuZQKDZcij-GQTql2ljJTKhVUEBEZSEV2biKMegHngty_9mXjdLd763_7ULfZzT6w5m86S7jDNqC-y278Qbd4j_38VHPL644cxLa8KyNHFzfnAYeLRTOrVzy03VkPvHosBv0YDxw7RxTzWY0undZhsL1n25jzZgGxYGGJzdxFrar2lPuGKgLIsrmdNziClr05BuSxJBnbWzoBPrP32ZdL-TYP2Ca-Ljxk3GLQVnjiaZMBk13tlCZX6xKX5iEtYcTkgBPje952kg-Zm5i_lcp02DKILROxZbIRe7Ees-hYSy7s_Zbgt-5JjOPxQtN-M70DM5BXJfhgI3sSuATfonIS7Tp1xAglR2x7gKPp3eDSnGFxxF4OgD5r_vcjbV18t6fs2t7hxwNzsD8ZP2LX02hWpUjUNttctSfwmF3131ezZfskGihnXy8b6L8BSLt3vw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqghAcyrNiSwEf4ATWxnk4yQEhoKyoipY9gFRxMbZ3jFZaJdtkAfWn8Ff4dcw4yZYi0VsPXGM7yuOb8Yw9_j7Gnig_LyVkRsSpUiLNXCEwjgMhnQVpcpzwlQ9iE_l0Whwfl7Mt9ms4C0NllYNPDI56XjtaIx9j6Fvg1JIoOfZ9WcTsYPJydSJIQYp2Wgc5jQ4iR3D6A9O39sXhAf7rp3E8efvxzTvRKwwIh354LXKlMgAnczAZJUZA4fQ8chH4yHpLRCkWYnC59B5Kk7s5lCrLkyyJrImBFkPR_V_JMcekcsJZ9nmT7JVp0LyUCo2YopDhwE6hxq1MlIoFFUcENlKRnJsUg3bAuYD3rz3aMPVNbv7PH-0W2-kDbv6qs5DbbAuqO-zGHzSMd9nPDxU3vOpIQ0zDu_JydH1L7nG4WNWLas19050BwasnYtCVccCxc0A3X1To6ml9Btt7Fo4lr1cQChlabOY2aFg1p9zVVClAFs_NssYRtBzOMVAPpcrY3tDJ8IW5xz5dyrfZZdv4unCfcYPBXOaIv016TIJzq3JywTaycerjAkZMDpjRrudzJ1mRpQ55XaF0hzONONMBZzoZsWebMauOzeTC3q8JipuexEQeLtTNV907Ng1pWYDzJrAqgY3wLUor0d5jS0xRcsT2B2jq3j22-gyXI_Z8APdZ878fae_iuz1m1xDf-v3h9OgBux4HCytEpPbZ9rr5Bg_ZVfd9vWibR8FWOfty2Tj_DehogOM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+nonlinear+sequential+four-point+fractional+q-difference+equation+involving+q-integral+operators+in+boundary+conditions+along+with+stability+criteria&rft.jtitle=Advances+in+difference+equations&rft.au=Boutiara%2C+Abdelatif&rft.au=Etemad%2C+Sina&rft.au=Alzabut%2C+Jehad&rft.au=Hussain%2C+Azhar&rft.date=2021-08-06&rft.issn=1687-1847&rft.eissn=1687-1847&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-021-03525-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13662_021_03525_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon