An improved fast iterative shrinkage thresholding algorithm with an error for image deblurring problem
In this paper, we introduce a new iterative forward-backward splitting method with an error for solving the variational inclusion problem of the sum of two monotone operators in real Hilbert spaces. We suggest and analyze this method under some mild appropriate conditions imposed on the parameters s...
Uloženo v:
| Vydáno v: | Fixed point theory and algorithms for sciences and engineering Ročník 2021; číslo 1; s. 1 - 25 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.11.2021
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 2730-5422, 2730-5422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we introduce a new iterative forward-backward splitting method with an error for solving the variational inclusion problem of the sum of two monotone operators in real Hilbert spaces. We suggest and analyze this method under some mild appropriate conditions imposed on the parameters such that another strong convergence theorem for these problem is obtained. We also apply our main result to improve the fast iterative shrinkage thresholding algorithm (IFISTA) with an error for solving the image deblurring problem. Finally, we provide numerical experiments to illustrate the convergence behavior and show the effectiveness of the sequence constructed by the inertial technique to the fast processing with high performance and the fast convergence with good performance of IFISTA. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2730-5422 2730-5422 |
| DOI: | 10.1186/s13663-021-00703-6 |