Tensor-structured algorithm for reduced-order scaling large-scale Kohn–Sham density functional theory calculations

We present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–S...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:npj computational materials Ročník 7; číslo 1; s. 1 - 9
Hlavní autoři: Lin, Chih-Chuen, Motamarri, Phani, Gavini, Vikram
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 12.04.2021
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2057-3960, 2057-3960
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L 1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2057-3960
2057-3960
DOI:10.1038/s41524-021-00517-5