A modified subgradient extragradient algorithm-type for solving quasimonotone variational inequality problems with applications

In this article, we introduce an inertial-type algorithm that combines the extragradient subgradient method, the projection contraction method, and the viscosity method. The proposed method is used for solving quasimonotone variational inequality problems in infinite dimensional real Hilbert spaces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications Jg. 2023; H. 1; S. 73 - 30
Hauptverfasser: Ofem, Austine Efut, Mebawondu, Akindele Adebayo, Ugwunnadi, Godwin Chidi, Işık, Hüseyin, Narain, Ojen Kumar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 16.05.2023
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1029-242X, 1025-5834, 1029-242X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we introduce an inertial-type algorithm that combines the extragradient subgradient method, the projection contraction method, and the viscosity method. The proposed method is used for solving quasimonotone variational inequality problems in infinite dimensional real Hilbert spaces such that it does not depend on the Lipschitz constant of the cost operator. Further, we prove the strong convergence results of the new algorithm. Our strong convergence results are achieved without imposing strict conditions on the control parameters and inertial factor of our algorithm. We utilize our algorithm to solve some problems in applied sciences and engineering such as image restoration and optimal control. Some numerical experiments are carried out to support our theoretical results. Our numerical illustrations show that our new method is more efficient than many existing methods.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-023-02981-7