Hyers–Ulam stability of impulsive Volterra delay integro-differential equations

This paper discusses different types of Ulam stability of first-order nonlinear Volterra delay integro-differential equations with impulses. Such types of equations allow the presence of two kinds of memory effects represented by the delay and the kernel of the used fractional integral operator. Our...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in difference equations Ročník 2021; číslo 1; s. 1 - 13
Hlavní autoři: Refaai, D. A., El-Sheikh, M. M. A., Ismail, Gamal A. F., Abdalla, Bahaaeldin, Abdeljawad, Thabet
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 30.10.2021
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1687-1847, 1687-1839, 1687-1847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper discusses different types of Ulam stability of first-order nonlinear Volterra delay integro-differential equations with impulses. Such types of equations allow the presence of two kinds of memory effects represented by the delay and the kernel of the used fractional integral operator. Our analysis is based on Pachpatte’s inequality and the fixed point approach represented by the Picard operators. Applications are provided to illustrate the stability results obtained in the case of a finite interval.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-021-03632-1