Hyers–Ulam stability of impulsive Volterra delay integro-differential equations

This paper discusses different types of Ulam stability of first-order nonlinear Volterra delay integro-differential equations with impulses. Such types of equations allow the presence of two kinds of memory effects represented by the delay and the kernel of the used fractional integral operator. Our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations Jg. 2021; H. 1; S. 1 - 13
Hauptverfasser: Refaai, D. A., El-Sheikh, M. M. A., Ismail, Gamal A. F., Abdalla, Bahaaeldin, Abdeljawad, Thabet
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 30.10.2021
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1687-1847, 1687-1839, 1687-1847
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses different types of Ulam stability of first-order nonlinear Volterra delay integro-differential equations with impulses. Such types of equations allow the presence of two kinds of memory effects represented by the delay and the kernel of the used fractional integral operator. Our analysis is based on Pachpatte’s inequality and the fixed point approach represented by the Picard operators. Applications are provided to illustrate the stability results obtained in the case of a finite interval.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-021-03632-1