Convergence theory of exact interpolation scheme for computing several eigenvectors
Summary An asymptotic convergence analysis of a new multilevel method for numerical solution of eigenvalues and eigenvectors of symmetric and positive definite matrices is performed. The analyzed method is a generalization of the original method that has recently been proposed by R. Kužel and P. Van...
Uloženo v:
| Vydáno v: | Numerical linear algebra with applications Ročník 23; číslo 2; s. 373 - 390 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Blackwell Publishing Ltd
01.03.2016
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1070-5325, 1099-1506 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Summary
An asymptotic convergence analysis of a new multilevel method for numerical solution of eigenvalues and eigenvectors of symmetric and positive definite matrices is performed. The analyzed method is a generalization of the original method that has recently been proposed by R. Kužel and P. Vaněk (DOI: 10.1002/nla.1975) and uses a standard multigrid prolongator matrix enriched by one full column vector, which approximates the first eigenvector. The new generalized eigensolver is designed to compute
m≥1 eigenvectors. Their asymptotic convergence in terms of the generalized residuals is proved, and its convergence factor is estimated. The theoretical analysis is illustrated by numerical examples. Copyright © 2015 John Wiley & Sons, Ltd. |
|---|---|
| Bibliografie: | ArticleID:NLA2029 Faculty of Mathematics and Physics ark:/67375/WNG-2MK5XLKG-6 Charles University in Prague istex:D8963CDC1E8FEDFA56EF5E6025088AE643F33BAB ERC-CZ - No. LL1202 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1070-5325 1099-1506 |
| DOI: | 10.1002/nla.2029 |