The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes

Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt...

Full description

Saved in:
Bibliographic Details
Published in:Wound repair and regeneration Vol. 24; no. 6; pp. 994 - 1003
Main Authors: van Dongen, Joris A., Stevens, Hieronymus P., Parvizi, Mojtaba, van der Lei, Berend, Harmsen, Martin C.
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01.11.2016
Subjects:
ISSN:1067-1927, 1524-475X, 1524-475X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obtained by dissociation of adipose tissue, either enzymatically or mechanical. Enzymatic dissociation procedures are time‐consuming and expensive. Therefore, we developed a new inexpensive mechanical dissociation procedure to obtain the stromal vascular fraction from adipose tissue in a time sparing way, which is directly available for therapeutic injection. This mechanical dissociation procedure is denoted as the fractionation of adipose tissue (FAT) procedure. The FAT procedure was performed in eleven patients. The composition of the FAT‐stromal vascular fraction was characterized by immunohistochemistry. Adipose derived stromal cells isolated from the FAT‐stromal vascular fraction were compared with adipose derived stromal cells isolated from nondissociated adipose tissue (control) for their CD‐surface marker expression, differentiation and colony forming unit capacity. Case reports demonstrated the therapeutic effect of the FAT‐stromal vascular fraction. The FAT‐stromal vascular fraction is an enrichment of extracellular matrix containing a microvasculature and culturable adipose derived stromal cells. Adipose derived stromal cells isolated from FAT‐stromal vascular fraction did not differ from adipose derived stromal cells isolated from the control group in CD‐surface marker expression, differentiation and colony forming unit capacity. The FAT procedure is a rapid effective mechanical dissociation procedure to generate FAT‐stromal vascular fraction ready for injection with all its therapeutic components of adipose tissue: it contains culturable adipose derived stromal cells embedded in their natural supportive extracellular matrix together with the microvasculature.
AbstractList Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obtained by dissociation of adipose tissue, either enzymatically or mechanical. Enzymatic dissociation procedures are time-consuming and expensive. Therefore, we developed a new inexpensive mechanical dissociation procedure to obtain the stromal vascular fraction from adipose tissue in a time sparing way, which is directly available for therapeutic injection. This mechanical dissociation procedure is denoted as the fractionation of adipose tissue (FAT) procedure. The FAT procedure was performed in eleven patients. The composition of the FAT-stromal vascular fraction was characterized by immunohistochemistry. Adipose derived stromal cells isolated from the FAT-stromal vascular fraction were compared with adipose derived stromal cells isolated from nondissociated adipose tissue (control) for their CD-surface marker expression, differentiation and colony forming unit capacity. Case reports demonstrated the therapeutic effect of the FAT-stromal vascular fraction. The FAT-stromal vascular fraction is an enrichment of extracellular matrix containing a microvasculature and culturable adipose derived stromal cells. Adipose derived stromal cells isolated from FAT-stromal vascular fraction did not differ from adipose derived stromal cells isolated from the control group in CD-surface marker expression, differentiation and colony forming unit capacity. The FAT procedure is a rapid effective mechanical dissociation procedure to generate FAT-stromal vascular fraction ready for injection with all its therapeutic components of adipose tissue: it contains culturable adipose derived stromal cells embedded in their natural supportive extracellular matrix together with the microvasculature.Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obtained by dissociation of adipose tissue, either enzymatically or mechanical. Enzymatic dissociation procedures are time-consuming and expensive. Therefore, we developed a new inexpensive mechanical dissociation procedure to obtain the stromal vascular fraction from adipose tissue in a time sparing way, which is directly available for therapeutic injection. This mechanical dissociation procedure is denoted as the fractionation of adipose tissue (FAT) procedure. The FAT procedure was performed in eleven patients. The composition of the FAT-stromal vascular fraction was characterized by immunohistochemistry. Adipose derived stromal cells isolated from the FAT-stromal vascular fraction were compared with adipose derived stromal cells isolated from nondissociated adipose tissue (control) for their CD-surface marker expression, differentiation and colony forming unit capacity. Case reports demonstrated the therapeutic effect of the FAT-stromal vascular fraction. The FAT-stromal vascular fraction is an enrichment of extracellular matrix containing a microvasculature and culturable adipose derived stromal cells. Adipose derived stromal cells isolated from FAT-stromal vascular fraction did not differ from adipose derived stromal cells isolated from the control group in CD-surface marker expression, differentiation and colony forming unit capacity. The FAT procedure is a rapid effective mechanical dissociation procedure to generate FAT-stromal vascular fraction ready for injection with all its therapeutic components of adipose tissue: it contains culturable adipose derived stromal cells embedded in their natural supportive extracellular matrix together with the microvasculature.
Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obtained by dissociation of adipose tissue, either enzymatically or mechanical. Enzymatic dissociation procedures are time‐consuming and expensive. Therefore, we developed a new inexpensive mechanical dissociation procedure to obtain the stromal vascular fraction from adipose tissue in a time sparing way, which is directly available for therapeutic injection. This mechanical dissociation procedure is denoted as the fractionation of adipose tissue (FAT) procedure. The FAT procedure was performed in eleven patients. The composition of the FAT‐stromal vascular fraction was characterized by immunohistochemistry. Adipose derived stromal cells isolated from the FAT‐stromal vascular fraction were compared with adipose derived stromal cells isolated from nondissociated adipose tissue (control) for their CD‐surface marker expression, differentiation and colony forming unit capacity. Case reports demonstrated the therapeutic effect of the FAT‐stromal vascular fraction. The FAT‐stromal vascular fraction is an enrichment of extracellular matrix containing a microvasculature and culturable adipose derived stromal cells. Adipose derived stromal cells isolated from FAT‐stromal vascular fraction did not differ from adipose derived stromal cells isolated from the control group in CD‐surface marker expression, differentiation and colony forming unit capacity. The FAT procedure is a rapid effective mechanical dissociation procedure to generate FAT‐stromal vascular fraction ready for injection with all its therapeutic components of adipose tissue: it contains culturable adipose derived stromal cells embedded in their natural supportive extracellular matrix together with the microvasculature.
Author Harmsen, Martin C.
van der Lei, Berend
Stevens, Hieronymus P.
van Dongen, Joris A.
Parvizi, Mojtaba
Author_xml – sequence: 1
  givenname: Joris A.
  surname: van Dongen
  fullname: van Dongen, Joris A.
  organization: Plastic Surgery Department, Bergman Clinics, Rijswijk, The Netherlands
– sequence: 2
  givenname: Hieronymus P.
  surname: Stevens
  fullname: Stevens, Hieronymus P.
  email: stevens.hp@gmail.com, stevens.hp@gmail.com
  organization: Plastic Surgery Department, Bergman Clinics, Rijswijk, The Netherlands
– sequence: 3
  givenname: Mojtaba
  surname: Parvizi
  fullname: Parvizi, Mojtaba
  organization: Department of Pathology & Medical Biology, University of Groningen and University Medical Centre of Groningen, Groningen, The Netherlands
– sequence: 4
  givenname: Berend
  surname: van der Lei
  fullname: van der Lei, Berend
  organization: Department of Plastic Surgery, University of Groningen and University Medical Centre of Groningen, Groningen, The Netherlands
– sequence: 5
  givenname: Martin C.
  surname: Harmsen
  fullname: Harmsen, Martin C.
  organization: Department of Pathology & Medical Biology, University of Groningen and University Medical Centre of Groningen, Groningen, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27717133$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhi1URD_gwB9APsIhrT-S2D5CBaVVC9K2VblZs84YDNl4ayct_fd4u7s9IPDBtqznfTSe2Sc7QxyQkNecHfKyju5TOuSi1uIZ2eONqKtaNd92yp21quJGqF2yn_NPxljTGP2C7AqluOJS7pH-6gdSn8CNIQ6w2mj0FLqwjBnpGHKekC5TdNhNqTxEGucjhIHmMcUF9PQOspt6SE-STH1MNOF3HDAV413JT2mlyy_Jcw99xleb84Bcf_p4dfy5Ov96cnr8_rxytTCiUqoVRnMhfGekZs1c1sDQgcFOC-mg_IN5b0A45TV23EHNuZnr1gB6YI08IG_X3lL47YR5tIuQHfY9DBinbLmWjWxNy1VB32zQab7Azi5TWEB6sNsOFeBoDbgUc07orQvjY6PGBKG3nNnVDGyZgX2cQUm8-yuxlf6L3djvQ48P_wftzWy2TVTrRMgj_n5KQPplWyVVY2--nFh9cXZx-WHGrJF_AJqnp3I
CitedBy_id crossref_primary_10_1093_asj_sjab431
crossref_primary_10_3390_bioengineering10101175
crossref_primary_10_3390_gels11090712
crossref_primary_10_1111_exd_14561
crossref_primary_10_1093_asj_sjac122
crossref_primary_10_1080_14712598_2019_1671970
crossref_primary_10_3390_ijms18010208
crossref_primary_10_3390_bioengineering12020105
crossref_primary_10_3390_cells12010030
crossref_primary_10_1080_21691401_2019_1608215
crossref_primary_10_1097_GOX_0000000000006952
crossref_primary_10_3390_bioengineering10030328
crossref_primary_10_1186_s13063_022_06514_3
crossref_primary_10_3389_fbioe_2022_895735
crossref_primary_10_1007_s00266_024_04159_y
crossref_primary_10_1093_asj_sjaa111
crossref_primary_10_1007_s00403_021_02242_x
crossref_primary_10_1097_MD_0000000000011667
crossref_primary_10_1097_PRS_0000000000004609
crossref_primary_10_1093_asj_sjz223
crossref_primary_10_1016_S1615_9071_21_00114_3
crossref_primary_10_1186_s13018_022_02918_8
crossref_primary_10_1007_s10151_021_02524_6
crossref_primary_10_1093_asj_sjaf055
crossref_primary_10_1097_PRS_0000000000005465
crossref_primary_10_1038_s41598_023_34915_0
crossref_primary_10_1097_PRS_0000000000005464
crossref_primary_10_3390_cells9051097
crossref_primary_10_1089_ten_tea_2018_0192
crossref_primary_10_3390_app10144691
crossref_primary_10_1177_03635465221112083
crossref_primary_10_1155_2019_6279721
crossref_primary_10_3390_jcm10163637
crossref_primary_10_1111_wrr_12582
crossref_primary_10_1007_s12631_018_0151_6
crossref_primary_10_1186_s13287_019_1140_1
crossref_primary_10_1111_wrr_13228
crossref_primary_10_1007_s11678_022_00699_4
crossref_primary_10_1097_PRS_0000000000006366
crossref_primary_10_3390_ani12091088
crossref_primary_10_1016_j_actbio_2018_07_004
crossref_primary_10_1093_asj_sjy029
crossref_primary_10_1097_PRS_0000000000003372
crossref_primary_10_1097_PRS_0000000000003373
crossref_primary_10_1093_asj_sjad125
crossref_primary_10_1097_SAP_0000000000004048
crossref_primary_10_3390_obesities5030061
crossref_primary_10_1093_asj_sjab109
crossref_primary_10_3390_bioengineering10010032
crossref_primary_10_3390_bioengineering11020171
crossref_primary_10_1007_s00266_019_01439_w
crossref_primary_10_1007_s44411_025_00115_7
crossref_primary_10_3390_ijms26146800
crossref_primary_10_3390_jcm11195887
crossref_primary_10_1002_term_2407
crossref_primary_10_1002_jeo2_70378
crossref_primary_10_4252_wjsc_v17_i6_103775
crossref_primary_10_1002_term_2843
Cites_doi 10.1016/j.bjps.2013.11.011
10.1002/cyto.a.22205
10.1186/1749-8090-6-43
10.1089/scd.2008.0117
10.1089/scd.2011.0086
10.1097/PRS.0000000000001123
10.1016/j.jcyt.2013.02.006
10.5966/sctm.2013-0032
10.1371/journal.pcbi.1000445
10.1155/2014/965849
10.1016/j.ahj.2014.03.022
10.1002/jcp.20636
10.1371/journal.pone.0092444
10.1634/stemcells.2007-0388
10.1089/scd.2011.0200
10.1161/01.CIR.0000121425.42966.F1
10.1089/scd.2014.0517
10.1016/j.burns.2014.01.023
10.1089/107632701300062859
10.1161/01.ATV.0000017728.55907.A9
10.1016/j.bjps.2014.04.030
10.1097/SCS.0b013e31825d0594
10.1089/scd.2014.0203
10.1161/CIRCRESAHA.108.190926
10.1097/PRS.0b013e3182590387
10.1177/1090820X11418332
10.1016/j.biocel.2003.12.003
10.1091/mbc.e02-02-0105
10.1097/PRS.0b013e3182a80652
10.1002/path.1437
10.1097/SCS.0000000000000831
ContentType Journal Article
Copyright 2016 by the Wound Healing Society
2016 by the Wound Healing Society.
Copyright_xml – notice: 2016 by the Wound Healing Society
– notice: 2016 by the Wound Healing Society.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/wrr.12482
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1524-475X
EndPage 1003
ExternalDocumentID 27717133
10_1111_wrr_12482
WRR12482
ark_67375_WNG_8MJMSBR0_9
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
04C
05W
0R~
10A
123
1OB
1OC
29R
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOJX
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBC
EBD
EBS
ECF
ECT
ECV
EIHBH
EJD
EMB
EMK
EMOBN
ENC
EPT
ESX
EX3
F00
F01
F04
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQ9
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4292-776298122fd93805b34a0eca9ed823ca0000ff9a2c7f8ed1ca4119b869aefa053
IEDL.DBID DRFUL
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392825000129&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1067-1927
1524-475X
IngestDate Fri Jul 11 08:14:41 EDT 2025
Thu Apr 03 07:01:22 EDT 2025
Sat Nov 29 04:26:23 EST 2025
Tue Nov 18 19:41:32 EST 2025
Wed Jan 22 16:19:26 EST 2025
Sun Sep 21 06:18:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 by the Wound Healing Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4292-776298122fd93805b34a0eca9ed823ca0000ff9a2c7f8ed1ca4119b869aefa053
Notes ArticleID:WRR12482
istex:4B3B5176D6B904389CB4AF05690998602BB48512
ark:/67375/WNG-8MJMSBR0-9
Joris A. van Dongen and Hieronymus P. Stevens contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27717133
PQID 1835369617
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1835369617
pubmed_primary_27717133
crossref_citationtrail_10_1111_wrr_12482
crossref_primary_10_1111_wrr_12482
wiley_primary_10_1111_wrr_12482_WRR12482
istex_primary_ark_67375_WNG_8MJMSBR0_9
PublicationCentury 2000
PublicationDate November/December 2016
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November/December 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Wound repair and regeneration
PublicationTitleAlternate Wound Rep and Reg
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13 (12):4279-95.
Cravy TV. A modified suture placement technique to avoid suture drag or "cheese wire" effect. Ophthalmic Surg 1980; 11 (5): 338-42.
Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns 2014; 40 (7): 1375-83.
Nery AA, Nascimento IC, Glaser T, Bassaneze V, Krieger JE, Ulrich H. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry Part A 2013; 83 (1): 48-61.
Perin EC, Sanz-Ruiz R, Sanchez PL, Lasso J, Perez-Cano R, Alonso-Farto JC, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am Heart J 2014; 168 (1): 88-95.e2.
Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 2009; 104 (12): 1410-20.
Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 2004; 36 (6): 1031-7.
Bauer AL, Jackson TL, Jiang Y. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol 2009; 5 (7): e1000445.
Baer PC. Adipose-derived stem cells and their potential to differentiate into the epithelial lineage. Stem Cells Dev 2011; 20 (10): 1805-16.
Parvizi M, Harmsen MC. Therapeutic prospect of adipose-derived stromal cells for the treatment of abdominal aortic aneurysm. Stem Cells Dev 2015; 24 (13): 1493-505.
Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013; 15 (6): 641-8.
Semon JA, Zhang X, Pandey AC, Alandete SM, Maness C, Zhang S, et al. Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis. Stem Cells Transl Med 2013; 2 (10): 789-796.
Premaratne GU, Ma LP, Fujita M, Lin X, Bollano E, Fu M. Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role. J Cardiothorac Surg 2011; 6: 43.
Largo RD, Tchang LA, Mele V, Scherberich A, Harder Y, Wettstein R, et al. Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review. J Plast Reconstr Aesthet Surg 2014; 67 (4): 437-48.
Agostini T, Spinelli G, Marino G, Perello R. Esthetic restoration in progressive hemifacial atrophy (Romberg disease): structural fat grafting versus local/free flaps. J Craniofac Surg 2014; 25 (3): 783-7.
Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, et al. Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol 2013; 129: 89-115.
Tanna N, Broer PN, Roostaeian J, Bradley JP, Levine JP, Saadeh PB. Soft tissue correction of craniofacial microsomia and progressive hemifacial atrophy. J Craniofac Surg 2012; 23 (7 Suppl 1): 2024-7.
Guzman C, Bagga M, Kaur A, Westermarck J, Abankwa D. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One 2014; 9 (3): e92444.
Willemsen JC, Mulder KM, Stevens HP. Lipofilling with minimal access cranial suspension lifting for enhanced rejuvenation. Aesthet Surg J 2011; 31 (7): 759-69.
Charles-de-Sa L, Gontijo-de-Amorim NF, Maeda Takiya C, Borojevic R, Benati D, Bernardi P, et al. Antiaging treatment of the facial skin by fat graft and adipose-derived stem cells. Plast Reconstr Surg 2015; 135 (4): 999-1009.
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7 (2): 211-28.
Aronowitz JA, Ellenhorn JD. Adipose stromal vascular fraction isolation: a head-to-head comparison of four commercial cell separation systems. Plast Reconstr Surg 2013; 132 (6): 932e-9e.
Cai L, Johnstone BH, Cook TG, Liang Z, Traktuev D, Cornetta K, et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells (Dayton, Ohio) 2007; 25 (12): 3234-43.
Chavakis E, Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol 2002; 22 (6): 887-93.
Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109 (10): 1292-8.
Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. BioMed Res Int 2014; 2014: 965849.
Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 2012; 21 (8): 1299-308.
Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol 2003; 200 (4): 423-8.
Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 2006; 208 (1): 64-76.
Brongo S, Nicoletti GF, La Padula S, Mele CM, D'Andrea F. Use of lipofilling for the treatment of severe burn outcomes. Plast Reconstr Surg 2012; 130 (2): 374e-6e.
Lin G, Garcia M, Ning H, Banie L, Guo YL, Lue TF, et al. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 2008; 17 (6): 1053-63.
Yim RL, Lee JT, Bow CH, Meij B, Leung V, Cheung KM, et al. A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics. Stem Cells Dev 2014; 23 (21): 2553-67.
Pallua N, Baroncini A, Alharbi Z, Stromps JP. Improvement of facial scar appearance and microcirculation by autologous lipofilling. J Plast Reconstr Aesthet Surg 2014;67 (8): 1033-7.
2013; 2
2002; 13
2013; 83
2013; 129
2008; 17
2011; 31
2014; 25
2014; 2014
2004; 109
2014; 40
2011; 6
2014; 67
2014; 23
2015; 24
2012; 130
2006; 208
2013; 15
2001; 7
2015; 135
2004; 36
1980; 11
2002; 22
2011; 20
2013; 132
2009; 5
2014; 9
2012; 23
2003; 200
2012; 21
2009; 104
2007; 25
2014; 168
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Tanna N (e_1_2_7_6_1) 2012; 23
e_1_2_7_19_1
Cravy TV. (e_1_2_7_34_1) 1980; 11
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
Ferroni L (e_1_2_7_11_1) 2013; 129
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – reference: Perin EC, Sanz-Ruiz R, Sanchez PL, Lasso J, Perez-Cano R, Alonso-Farto JC, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am Heart J 2014; 168 (1): 88-95.e2.
– reference: Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109 (10): 1292-8.
– reference: Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 2006; 208 (1): 64-76.
– reference: Yim RL, Lee JT, Bow CH, Meij B, Leung V, Cheung KM, et al. A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics. Stem Cells Dev 2014; 23 (21): 2553-67.
– reference: Tanna N, Broer PN, Roostaeian J, Bradley JP, Levine JP, Saadeh PB. Soft tissue correction of craniofacial microsomia and progressive hemifacial atrophy. J Craniofac Surg 2012; 23 (7 Suppl 1): 2024-7.
– reference: Brongo S, Nicoletti GF, La Padula S, Mele CM, D'Andrea F. Use of lipofilling for the treatment of severe burn outcomes. Plast Reconstr Surg 2012; 130 (2): 374e-6e.
– reference: Premaratne GU, Ma LP, Fujita M, Lin X, Bollano E, Fu M. Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role. J Cardiothorac Surg 2011; 6: 43.
– reference: Cai L, Johnstone BH, Cook TG, Liang Z, Traktuev D, Cornetta K, et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells (Dayton, Ohio) 2007; 25 (12): 3234-43.
– reference: Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol 2003; 200 (4): 423-8.
– reference: Parvizi M, Harmsen MC. Therapeutic prospect of adipose-derived stromal cells for the treatment of abdominal aortic aneurysm. Stem Cells Dev 2015; 24 (13): 1493-505.
– reference: Largo RD, Tchang LA, Mele V, Scherberich A, Harder Y, Wettstein R, et al. Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review. J Plast Reconstr Aesthet Surg 2014; 67 (4): 437-48.
– reference: Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns 2014; 40 (7): 1375-83.
– reference: Chavakis E, Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol 2002; 22 (6): 887-93.
– reference: Pallua N, Baroncini A, Alharbi Z, Stromps JP. Improvement of facial scar appearance and microcirculation by autologous lipofilling. J Plast Reconstr Aesthet Surg 2014;67 (8): 1033-7.
– reference: Charles-de-Sa L, Gontijo-de-Amorim NF, Maeda Takiya C, Borojevic R, Benati D, Bernardi P, et al. Antiaging treatment of the facial skin by fat graft and adipose-derived stem cells. Plast Reconstr Surg 2015; 135 (4): 999-1009.
– reference: Willemsen JC, Mulder KM, Stevens HP. Lipofilling with minimal access cranial suspension lifting for enhanced rejuvenation. Aesthet Surg J 2011; 31 (7): 759-69.
– reference: Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13 (12):4279-95.
– reference: Semon JA, Zhang X, Pandey AC, Alandete SM, Maness C, Zhang S, et al. Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis. Stem Cells Transl Med 2013; 2 (10): 789-796.
– reference: Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, et al. Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol 2013; 129: 89-115.
– reference: Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 2012; 21 (8): 1299-308.
– reference: Nery AA, Nascimento IC, Glaser T, Bassaneze V, Krieger JE, Ulrich H. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry Part A 2013; 83 (1): 48-61.
– reference: Guzman C, Bagga M, Kaur A, Westermarck J, Abankwa D. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One 2014; 9 (3): e92444.
– reference: Lin G, Garcia M, Ning H, Banie L, Guo YL, Lue TF, et al. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 2008; 17 (6): 1053-63.
– reference: Baer PC. Adipose-derived stem cells and their potential to differentiate into the epithelial lineage. Stem Cells Dev 2011; 20 (10): 1805-16.
– reference: Cravy TV. A modified suture placement technique to avoid suture drag or "cheese wire" effect. Ophthalmic Surg 1980; 11 (5): 338-42.
– reference: Bauer AL, Jackson TL, Jiang Y. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol 2009; 5 (7): e1000445.
– reference: Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013; 15 (6): 641-8.
– reference: Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 2004; 36 (6): 1031-7.
– reference: Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. BioMed Res Int 2014; 2014: 965849.
– reference: Agostini T, Spinelli G, Marino G, Perello R. Esthetic restoration in progressive hemifacial atrophy (Romberg disease): structural fat grafting versus local/free flaps. J Craniofac Surg 2014; 25 (3): 783-7.
– reference: Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7 (2): 211-28.
– reference: Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 2009; 104 (12): 1410-20.
– reference: Aronowitz JA, Ellenhorn JD. Adipose stromal vascular fraction isolation: a head-to-head comparison of four commercial cell separation systems. Plast Reconstr Surg 2013; 132 (6): 932e-9e.
– volume: 67
  start-page: 437
  issue: 4
  year: 2014
  end-page: 48
  article-title: Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review
  publication-title: J Plast Reconstr Aesthet Surg
– volume: 40
  start-page: 1375
  issue: 7
  year: 2014
  end-page: 83
  article-title: Stromal vascular fraction improves deep partial thickness burn wound healing
  publication-title: Burns
– volume: 17
  start-page: 1053
  issue: 6
  year: 2008
  end-page: 63
  article-title: Defining stem and progenitor cells within adipose tissue
  publication-title: Stem Cells Dev
– volume: 135
  start-page: 999
  issue: 4
  year: 2015
  end-page: 1009
  article-title: Antiaging treatment of the facial skin by fat graft and adipose‐derived stem cells
  publication-title: Plast Reconstr Surg
– volume: 21
  start-page: 1299
  issue: 8
  year: 2012
  end-page: 308
  article-title: The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells
  publication-title: Stem Cells Dev
– volume: 67
  start-page: 1033
  issue: 8
  year: 2014
  end-page: 7
  article-title: Improvement of facial scar appearance and microcirculation by autologous lipofilling
  publication-title: J Plast Reconstr Aesthet Surg
– volume: 24
  start-page: 1493
  issue: 13
  year: 2015
  end-page: 505
  article-title: Therapeutic prospect of adipose‐derived stromal cells for the treatment of abdominal aortic aneurysm
  publication-title: Stem Cells Dev
– volume: 130
  start-page: 374e
  issue: 2
  year: 2012
  end-page: 6e
  article-title: Use of lipofilling for the treatment of severe burn outcomes
  publication-title: Plast Reconstr Surg
– volume: 22
  start-page: 887
  issue: 6
  year: 2002
  end-page: 93
  article-title: Regulation of endothelial cell survival and apoptosis during angiogenesis
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 25
  start-page: 783
  issue: 3
  year: 2014
  end-page: 7
  article-title: Esthetic restoration in progressive hemifacial atrophy (Romberg disease): structural fat grafting versus local/free flaps
  publication-title: J Craniofac Surg
– volume: 168
  start-page: 88
  issue: 1
  year: 2014
  end-page: 95.e2
  article-title: Adipose‐derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial
  publication-title: Am Heart J
– volume: 7
  start-page: 211
  issue: 2
  year: 2001
  end-page: 28
  article-title: Multilineage cells from human adipose tissue: implications for cell‐based therapies
  publication-title: Tissue Eng
– volume: 132
  start-page: 932e
  issue: 6
  year: 2013
  end-page: 9e
  article-title: Adipose stromal vascular fraction isolation: a head‐to‐head comparison of four commercial cell separation systems
  publication-title: Plast Reconstr Surg
– volume: 20
  start-page: 1805
  issue: 10
  year: 2011
  end-page: 16
  article-title: Adipose‐derived stem cells and their potential to differentiate into the epithelial lineage
  publication-title: Stem Cells Dev
– volume: 15
  start-page: 641
  issue: 6
  year: 2013
  end-page: 8
  article-title: Stromal cells from the adipose tissue‐derived stromal vascular fraction and culture expanded adipose tissue‐derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT)
  publication-title: Cytotherapy
– volume: 36
  start-page: 1031
  issue: 6
  year: 2004
  end-page: 7
  article-title: Tissue repair and the dynamics of the extracellular matrix
  publication-title: Int J Biochem Cell Biol
– volume: 23
  start-page: 2024
  issue: 7 Suppl 1
  year: 2012
  end-page: 7
  article-title: Soft tissue correction of craniofacial microsomia and progressive hemifacial atrophy
  publication-title: J Craniofac Surg
– volume: 104
  start-page: 1410
  issue: 12
  year: 2009
  end-page: 20
  article-title: Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells
  publication-title: Circ Res
– volume: 31
  start-page: 759
  issue: 7
  year: 2011
  end-page: 69
  article-title: Lipofilling with minimal access cranial suspension lifting for enhanced rejuvenation
  publication-title: Aesthet Surg J
– volume: 208
  start-page: 64
  issue: 1
  year: 2006
  end-page: 76
  article-title: Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates
  publication-title: J Cell Physiol
– volume: 9
  start-page: e92444
  issue: 3
  year: 2014
  article-title: ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays
  publication-title: PLoS One
– volume: 109
  start-page: 1292
  issue: 10
  year: 2004
  end-page: 8
  article-title: Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells
  publication-title: Circulation
– volume: 23
  start-page: 2553
  issue: 21
  year: 2014
  end-page: 67
  article-title: A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics
  publication-title: Stem Cells Dev
– volume: 129
  start-page: 89
  year: 2013
  end-page: 115
  article-title: Potential for neural differentiation of mesenchymal stem cells
  publication-title: Adv Biochem Eng Biotechnol
– volume: 2
  start-page: 789
  issue: 10
  year: 2013
  end-page: 796
  article-title: Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis
  publication-title: Stem Cells Transl Med
– volume: 6
  start-page: 43
  year: 2011
  article-title: Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti‐inflammatory role
  publication-title: J Cardiothorac Surg
– volume: 13
  start-page: 4279
  issue: 12
  year: 2002
  end-page: 95
  article-title: Human adipose tissue is a source of multipotent stem cells
  publication-title: Mol Biol Cell
– volume: 5
  start-page: e1000445
  issue: 7
  year: 2009
  article-title: Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis
  publication-title: PLoS Comput Biol
– volume: 2014
  start-page: 965849
  year: 2014
  article-title: Prospect of stem cell conditioned medium in regenerative medicine
  publication-title: BioMed Res Int
– volume: 11
  start-page: 338
  issue: 5
  year: 1980
  end-page: 42
  article-title: A modified suture placement technique to avoid suture drag or “cheese wire” effect
  publication-title: Ophthalmic Surg
– volume: 200
  start-page: 423
  issue: 4
  year: 2003
  end-page: 8
  article-title: Functional structure and composition of the extracellular matrix
  publication-title: J Pathol
– volume: 83
  start-page: 48
  issue: 1
  year: 2013
  end-page: 61
  article-title: Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications
  publication-title: Cytometry Part A
– volume: 25
  start-page: 3234
  issue: 12
  year: 2007
  end-page: 43
  article-title: Suppression of hepatocyte growth factor production impairs the ability of adipose‐derived stem cells to promote ischemic tissue revascularization
  publication-title: Stem Cells (Dayton, Ohio)
– ident: e_1_2_7_4_1
  doi: 10.1016/j.bjps.2013.11.011
– ident: e_1_2_7_14_1
  doi: 10.1002/cyto.a.22205
– ident: e_1_2_7_22_1
  doi: 10.1186/1749-8090-6-43
– ident: e_1_2_7_9_1
  doi: 10.1089/scd.2008.0117
– ident: e_1_2_7_12_1
  doi: 10.1089/scd.2011.0086
– ident: e_1_2_7_17_1
  doi: 10.1097/PRS.0000000000001123
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jcyt.2013.02.006
– ident: e_1_2_7_20_1
  doi: 10.5966/sctm.2013-0032
– ident: e_1_2_7_32_1
  doi: 10.1371/journal.pcbi.1000445
– ident: e_1_2_7_10_1
  doi: 10.1155/2014/965849
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ahj.2014.03.022
– ident: e_1_2_7_18_1
  doi: 10.1002/jcp.20636
– ident: e_1_2_7_24_1
  doi: 10.1371/journal.pone.0092444
– ident: e_1_2_7_29_1
  doi: 10.1634/stemcells.2007-0388
– ident: e_1_2_7_8_1
  doi: 10.1089/scd.2011.0200
– ident: e_1_2_7_30_1
  doi: 10.1161/01.CIR.0000121425.42966.F1
– ident: e_1_2_7_27_1
  doi: 10.1089/scd.2014.0517
– ident: e_1_2_7_21_1
  doi: 10.1016/j.burns.2014.01.023
– ident: e_1_2_7_23_1
  doi: 10.1089/107632701300062859
– ident: e_1_2_7_31_1
  doi: 10.1161/01.ATV.0000017728.55907.A9
– ident: e_1_2_7_3_1
  doi: 10.1016/j.bjps.2014.04.030
– volume: 23
  start-page: 2024
  issue: 7
  year: 2012
  ident: e_1_2_7_6_1
  article-title: Soft tissue correction of craniofacial microsomia and progressive hemifacial atrophy
  publication-title: J Craniofac Surg
  doi: 10.1097/SCS.0b013e31825d0594
– ident: e_1_2_7_16_1
  doi: 10.1089/scd.2014.0203
– ident: e_1_2_7_28_1
  doi: 10.1161/CIRCRESAHA.108.190926
– volume: 11
  start-page: 338
  issue: 5
  year: 1980
  ident: e_1_2_7_34_1
  article-title: A modified suture placement technique to avoid suture drag or “cheese wire” effect
  publication-title: Ophthalmic Surg
– ident: e_1_2_7_2_1
  doi: 10.1097/PRS.0b013e3182590387
– ident: e_1_2_7_7_1
  doi: 10.1177/1090820X11418332
– ident: e_1_2_7_33_1
  doi: 10.1016/j.biocel.2003.12.003
– ident: e_1_2_7_13_1
  doi: 10.1091/mbc.e02-02-0105
– ident: e_1_2_7_26_1
  doi: 10.1097/PRS.0b013e3182a80652
– ident: e_1_2_7_19_1
  doi: 10.1002/path.1437
– volume: 129
  start-page: 89
  year: 2013
  ident: e_1_2_7_11_1
  article-title: Potential for neural differentiation of mesenchymal stem cells
  publication-title: Adv Biochem Eng Biotechnol
– ident: e_1_2_7_5_1
  doi: 10.1097/SCS.0000000000000831
SSID ssj0005598
Score 2.4212027
Snippet Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 994
SubjectTerms Adipose Tissue - cytology
Adipose Tissue - transplantation
Adult
Cell Differentiation
Cell Separation - methods
Cells, Cultured
Centrifugation
Cicatrix - prevention & control
Female
Flow Cytometry
Humans
Lipectomy
Middle Aged
Regeneration - physiology
Regenerative Medicine
Stromal Cells - cytology
Stromal Cells - transplantation
Transplantation, Autologous - methods
Wound Healing - physiology
Title The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes
URI https://api.istex.fr/ark:/67375/WNG-8MJMSBR0-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fwrr.12482
https://www.ncbi.nlm.nih.gov/pubmed/27717133
https://www.proquest.com/docview/1835369617
Volume 24
WOSCitedRecordID wos000392825000129&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1524-475X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005598
  issn: 1067-1927
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD7Urg--tIq39VKiiPgyMplrgk_eVhG7yGrpvoUzSUZK250ls1v9-Z5kLlqoIPg2DGcOIV_OLXMuAM-yIis4t1nEOaYR2dsskkWiI8NTGxdVbLnWYdhEOZ-L5VJ-2YFXQy1M1x9ivHDzkhH0tRdwrNo_hPyHcy_JOAnSvxNfVEWR1-TdYnb0-XeGRy67SjjSBeTIlH1jIZ_IM358yRxN_M7-vMrXvOy6Btsz2_-vVd-Evd7lZK-7M3ILduzqNpzR-WC168oaAjqsqRmak3XTWrYJcLBg3czW0YuGNZW_RWDtxjXnxG5IYR2ZtIz8X-bs99DI2mtRtiYUiV17B45m77-9_Rj1kxci7cdXkctdJJJMf1IbmYo4r9IMY6tRWiOSVKO3cnUtMdFlLazhGjPOZSUKibZGkuu7sLtqVvY-sEoLIRGRI4WitamqMjeZyRETJF9S4xReDAAo3bcl99MxztQQntCWqbBlU3g6kq67XhxXET0PKI4U6E598lqZq-P5ByUOPx1-fbOIlZzCkwFmRSLl_5PgyjbbVpGWy_2YQ15O4V6H_8gtKSn-pbielh1g_vtC1PFiER4e_DvpQ7hBDlnR1To-gt2N29rHcF1fEOzuAK6VS3HQn_Jfl9YBEg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD6UXUFfquKlq1ajiPgyMplrAr7Uy1p1d5G1pX0LZzKZItadJbOr_nxPMhctVBB8G4bMIeTcvpM5F4CnSZZknJsk4BzjgPxtEsgs0kHJYxNmRWi41n7YRL5YiNNT-WkHXva1MG1_iOHCzWmGt9dOwd2F9B9a_sPaF-SdBBngcZLFuRjB-M1yejz7neKRyrYUjowBIZm86yzkMnmGjy_4o7E72p-Xgc2L2NU7n-n1_9v2DdjtQCc7aKXkJuyY1S04JwlhlW0LGzx_WF0xLL-s68awjWcI8_6t3Fp6UbO6cPcIrNnY-huR65NYByINIwTMrDnzraydHWVr4iORa27D8fTt0evDoJu9EGg3wIpAdxZJcv5RVcpYhGkRJxgajdKUIoo1Oj9XVRIjnVfClFxjwrksRCbRVEiafQdGq3pl9oAVWgiJiBwpGK3KosjTMilTxAgJTWqcwPOeA0p3jcndfIxz1QcodGTKH9kEngxL1203jssWPfNsHFag_erS1_JUnSzeKTH_MP_8ahkqOYHHPZ8VKZX7U4IrU28bRXYudYMOeT6Bu60ADNSinCJgiuxp257Pf9-IOlku_cO9f1_6CK4eHs1navZ-8fE-XCN4lrWVjw9gtLFbsw9X9HcSAfuwE_Zf3z4EGg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3pi9QwFA_LjIhfPPDY8Ywi4pdK06ZtAn5R1_HaHZbRZfdbeM0h4jod0hn1z_clPXRhBcFvpaSPkHf9XvoOQh7zkpeMWZ4wBnmC_pYnssx0Ylhu07JOLdM6DpuoFgtxciIPd8jzoRam6w8xXrgFzYj2Oii4XRv3h5b_8P4ZeieBBnjKC1nwCZnuLedH-79TPArZlcKhMUAkU_WdhUImz_jxGX80DUf78zyweRa7Ruczv_J_275KLvegk77opOQa2bGr6-QUJYQ63xU2RP7QxlEwX9ZNa-kmMoRG_2a2Hl80tKnDPQJtN775huSGJNaRSEsRAVNvP8dW1sGO0jXyEcm1N8jR_PWnV2-TfvZCosMAKwTdZSbR-WfOyFykRZ1zSK0GaY3Icg3BzzknIdOVE9YwDZwxWYtSgnWAmn2TTFbNyu4SWmshJAAwwGDUmbquCsNNAZABokkNM_J04IDSfWPyMB_jVA0BCh6Zikc2I4_GpeuuG8d5i55ENo4rwH8N6WtVoY4Xb5Q4eH_w8eUyVXJGHg58VqhU4U8JrGyzbRXauSIMOmTVjNzqBGCkllUYAWNkj9uOfP77RtTxchkfbv_70gfk4uHeXO2_W3y4Qy4hOiu7wse7ZLLxW3uPXNDfUQL8_V7WfwFmWwOV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fractionation+of+adipose+tissue+procedure+to+obtain+stromal+vascular+fractions+for+regenerative+purposes&rft.jtitle=Wound+repair+and+regeneration&rft.au=van+Dongen%2C+Joris+A.&rft.au=Stevens%2C+Hieronymus+P.&rft.au=Parvizi%2C+Mojtaba&rft.au=van+der+Lei%2C+Berend&rft.date=2016-11-01&rft.issn=1067-1927&rft.eissn=1524-475X&rft.volume=24&rft.issue=6&rft.spage=994&rft.epage=1003&rft_id=info:doi/10.1111%2Fwrr.12482&rft.externalDBID=10.1111%252Fwrr.12482&rft.externalDocID=WRR12482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-1927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-1927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-1927&client=summon