The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes
Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt...
Saved in:
| Published in: | Wound repair and regeneration Vol. 24; no. 6; pp. 994 - 1003 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Blackwell Publishing Ltd
01.11.2016
|
| Subjects: | |
| ISSN: | 1067-1927, 1524-475X, 1524-475X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obtained by dissociation of adipose tissue, either enzymatically or mechanical. Enzymatic dissociation procedures are time‐consuming and expensive. Therefore, we developed a new inexpensive mechanical dissociation procedure to obtain the stromal vascular fraction from adipose tissue in a time sparing way, which is directly available for therapeutic injection. This mechanical dissociation procedure is denoted as the fractionation of adipose tissue (FAT) procedure. The FAT procedure was performed in eleven patients. The composition of the FAT‐stromal vascular fraction was characterized by immunohistochemistry. Adipose derived stromal cells isolated from the FAT‐stromal vascular fraction were compared with adipose derived stromal cells isolated from nondissociated adipose tissue (control) for their CD‐surface marker expression, differentiation and colony forming unit capacity. Case reports demonstrated the therapeutic effect of the FAT‐stromal vascular fraction. The FAT‐stromal vascular fraction is an enrichment of extracellular matrix containing a microvasculature and culturable adipose derived stromal cells. Adipose derived stromal cells isolated from FAT‐stromal vascular fraction did not differ from adipose derived stromal cells isolated from the control group in CD‐surface marker expression, differentiation and colony forming unit capacity. The FAT procedure is a rapid effective mechanical dissociation procedure to generate FAT‐stromal vascular fraction ready for injection with all its therapeutic components of adipose tissue: it contains culturable adipose derived stromal cells embedded in their natural supportive extracellular matrix together with the microvasculature. |
|---|---|
| AbstractList | Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obtained by dissociation of adipose tissue, either enzymatically or mechanical. Enzymatic dissociation procedures are time‐consuming and expensive. Therefore, we developed a new inexpensive mechanical dissociation procedure to obtain the stromal vascular fraction from adipose tissue in a time sparing way, which is directly available for therapeutic injection. This mechanical dissociation procedure is denoted as the fractionation of adipose tissue (FAT) procedure. The FAT procedure was performed in eleven patients. The composition of the FAT‐stromal vascular fraction was characterized by immunohistochemistry. Adipose derived stromal cells isolated from the FAT‐stromal vascular fraction were compared with adipose derived stromal cells isolated from nondissociated adipose tissue (control) for their CD‐surface marker expression, differentiation and colony forming unit capacity. Case reports demonstrated the therapeutic effect of the FAT‐stromal vascular fraction. The FAT‐stromal vascular fraction is an enrichment of extracellular matrix containing a microvasculature and culturable adipose derived stromal cells. Adipose derived stromal cells isolated from FAT‐stromal vascular fraction did not differ from adipose derived stromal cells isolated from the control group in CD‐surface marker expression, differentiation and colony forming unit capacity. The FAT procedure is a rapid effective mechanical dissociation procedure to generate FAT‐stromal vascular fraction ready for injection with all its therapeutic components of adipose tissue: it contains culturable adipose derived stromal cells embedded in their natural supportive extracellular matrix together with the microvasculature. Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obtained by dissociation of adipose tissue, either enzymatically or mechanical. Enzymatic dissociation procedures are time-consuming and expensive. Therefore, we developed a new inexpensive mechanical dissociation procedure to obtain the stromal vascular fraction from adipose tissue in a time sparing way, which is directly available for therapeutic injection. This mechanical dissociation procedure is denoted as the fractionation of adipose tissue (FAT) procedure. The FAT procedure was performed in eleven patients. The composition of the FAT-stromal vascular fraction was characterized by immunohistochemistry. Adipose derived stromal cells isolated from the FAT-stromal vascular fraction were compared with adipose derived stromal cells isolated from nondissociated adipose tissue (control) for their CD-surface marker expression, differentiation and colony forming unit capacity. Case reports demonstrated the therapeutic effect of the FAT-stromal vascular fraction. The FAT-stromal vascular fraction is an enrichment of extracellular matrix containing a microvasculature and culturable adipose derived stromal cells. Adipose derived stromal cells isolated from FAT-stromal vascular fraction did not differ from adipose derived stromal cells isolated from the control group in CD-surface marker expression, differentiation and colony forming unit capacity. The FAT procedure is a rapid effective mechanical dissociation procedure to generate FAT-stromal vascular fraction ready for injection with all its therapeutic components of adipose tissue: it contains culturable adipose derived stromal cells embedded in their natural supportive extracellular matrix together with the microvasculature.Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obtained by dissociation of adipose tissue, either enzymatically or mechanical. Enzymatic dissociation procedures are time-consuming and expensive. Therefore, we developed a new inexpensive mechanical dissociation procedure to obtain the stromal vascular fraction from adipose tissue in a time sparing way, which is directly available for therapeutic injection. This mechanical dissociation procedure is denoted as the fractionation of adipose tissue (FAT) procedure. The FAT procedure was performed in eleven patients. The composition of the FAT-stromal vascular fraction was characterized by immunohistochemistry. Adipose derived stromal cells isolated from the FAT-stromal vascular fraction were compared with adipose derived stromal cells isolated from nondissociated adipose tissue (control) for their CD-surface marker expression, differentiation and colony forming unit capacity. Case reports demonstrated the therapeutic effect of the FAT-stromal vascular fraction. The FAT-stromal vascular fraction is an enrichment of extracellular matrix containing a microvasculature and culturable adipose derived stromal cells. Adipose derived stromal cells isolated from FAT-stromal vascular fraction did not differ from adipose derived stromal cells isolated from the control group in CD-surface marker expression, differentiation and colony forming unit capacity. The FAT procedure is a rapid effective mechanical dissociation procedure to generate FAT-stromal vascular fraction ready for injection with all its therapeutic components of adipose tissue: it contains culturable adipose derived stromal cells embedded in their natural supportive extracellular matrix together with the microvasculature. |
| Author | Harmsen, Martin C. van der Lei, Berend Stevens, Hieronymus P. van Dongen, Joris A. Parvizi, Mojtaba |
| Author_xml | – sequence: 1 givenname: Joris A. surname: van Dongen fullname: van Dongen, Joris A. organization: Plastic Surgery Department, Bergman Clinics, Rijswijk, The Netherlands – sequence: 2 givenname: Hieronymus P. surname: Stevens fullname: Stevens, Hieronymus P. email: stevens.hp@gmail.com, stevens.hp@gmail.com organization: Plastic Surgery Department, Bergman Clinics, Rijswijk, The Netherlands – sequence: 3 givenname: Mojtaba surname: Parvizi fullname: Parvizi, Mojtaba organization: Department of Pathology & Medical Biology, University of Groningen and University Medical Centre of Groningen, Groningen, The Netherlands – sequence: 4 givenname: Berend surname: van der Lei fullname: van der Lei, Berend organization: Department of Plastic Surgery, University of Groningen and University Medical Centre of Groningen, Groningen, The Netherlands – sequence: 5 givenname: Martin C. surname: Harmsen fullname: Harmsen, Martin C. organization: Department of Pathology & Medical Biology, University of Groningen and University Medical Centre of Groningen, Groningen, The Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27717133$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kU1v1DAQhi1URD_gwB9APsIhrT-S2D5CBaVVC9K2VblZs84YDNl4ayct_fd4u7s9IPDBtqznfTSe2Sc7QxyQkNecHfKyju5TOuSi1uIZ2eONqKtaNd92yp21quJGqF2yn_NPxljTGP2C7AqluOJS7pH-6gdSn8CNIQ6w2mj0FLqwjBnpGHKekC5TdNhNqTxEGucjhIHmMcUF9PQOspt6SE-STH1MNOF3HDAV413JT2mlyy_Jcw99xleb84Bcf_p4dfy5Ov96cnr8_rxytTCiUqoVRnMhfGekZs1c1sDQgcFOC-mg_IN5b0A45TV23EHNuZnr1gB6YI08IG_X3lL47YR5tIuQHfY9DBinbLmWjWxNy1VB32zQab7Azi5TWEB6sNsOFeBoDbgUc07orQvjY6PGBKG3nNnVDGyZgX2cQUm8-yuxlf6L3djvQ48P_wftzWy2TVTrRMgj_n5KQPplWyVVY2--nFh9cXZx-WHGrJF_AJqnp3I |
| CitedBy_id | crossref_primary_10_1093_asj_sjab431 crossref_primary_10_3390_bioengineering10101175 crossref_primary_10_3390_gels11090712 crossref_primary_10_1111_exd_14561 crossref_primary_10_1093_asj_sjac122 crossref_primary_10_1080_14712598_2019_1671970 crossref_primary_10_3390_ijms18010208 crossref_primary_10_3390_bioengineering12020105 crossref_primary_10_3390_cells12010030 crossref_primary_10_1080_21691401_2019_1608215 crossref_primary_10_1097_GOX_0000000000006952 crossref_primary_10_3390_bioengineering10030328 crossref_primary_10_1186_s13063_022_06514_3 crossref_primary_10_3389_fbioe_2022_895735 crossref_primary_10_1007_s00266_024_04159_y crossref_primary_10_1093_asj_sjaa111 crossref_primary_10_1007_s00403_021_02242_x crossref_primary_10_1097_MD_0000000000011667 crossref_primary_10_1097_PRS_0000000000004609 crossref_primary_10_1093_asj_sjz223 crossref_primary_10_1016_S1615_9071_21_00114_3 crossref_primary_10_1186_s13018_022_02918_8 crossref_primary_10_1007_s10151_021_02524_6 crossref_primary_10_1093_asj_sjaf055 crossref_primary_10_1097_PRS_0000000000005465 crossref_primary_10_1038_s41598_023_34915_0 crossref_primary_10_1097_PRS_0000000000005464 crossref_primary_10_3390_cells9051097 crossref_primary_10_1089_ten_tea_2018_0192 crossref_primary_10_3390_app10144691 crossref_primary_10_1177_03635465221112083 crossref_primary_10_1155_2019_6279721 crossref_primary_10_3390_jcm10163637 crossref_primary_10_1111_wrr_12582 crossref_primary_10_1007_s12631_018_0151_6 crossref_primary_10_1186_s13287_019_1140_1 crossref_primary_10_1111_wrr_13228 crossref_primary_10_1007_s11678_022_00699_4 crossref_primary_10_1097_PRS_0000000000006366 crossref_primary_10_3390_ani12091088 crossref_primary_10_1016_j_actbio_2018_07_004 crossref_primary_10_1093_asj_sjy029 crossref_primary_10_1097_PRS_0000000000003372 crossref_primary_10_1097_PRS_0000000000003373 crossref_primary_10_1093_asj_sjad125 crossref_primary_10_1097_SAP_0000000000004048 crossref_primary_10_3390_obesities5030061 crossref_primary_10_1093_asj_sjab109 crossref_primary_10_3390_bioengineering10010032 crossref_primary_10_3390_bioengineering11020171 crossref_primary_10_1007_s00266_019_01439_w crossref_primary_10_1007_s44411_025_00115_7 crossref_primary_10_3390_ijms26146800 crossref_primary_10_3390_jcm11195887 crossref_primary_10_1002_term_2407 crossref_primary_10_1002_jeo2_70378 crossref_primary_10_4252_wjsc_v17_i6_103775 crossref_primary_10_1002_term_2843 |
| Cites_doi | 10.1016/j.bjps.2013.11.011 10.1002/cyto.a.22205 10.1186/1749-8090-6-43 10.1089/scd.2008.0117 10.1089/scd.2011.0086 10.1097/PRS.0000000000001123 10.1016/j.jcyt.2013.02.006 10.5966/sctm.2013-0032 10.1371/journal.pcbi.1000445 10.1155/2014/965849 10.1016/j.ahj.2014.03.022 10.1002/jcp.20636 10.1371/journal.pone.0092444 10.1634/stemcells.2007-0388 10.1089/scd.2011.0200 10.1161/01.CIR.0000121425.42966.F1 10.1089/scd.2014.0517 10.1016/j.burns.2014.01.023 10.1089/107632701300062859 10.1161/01.ATV.0000017728.55907.A9 10.1016/j.bjps.2014.04.030 10.1097/SCS.0b013e31825d0594 10.1089/scd.2014.0203 10.1161/CIRCRESAHA.108.190926 10.1097/PRS.0b013e3182590387 10.1177/1090820X11418332 10.1016/j.biocel.2003.12.003 10.1091/mbc.e02-02-0105 10.1097/PRS.0b013e3182a80652 10.1002/path.1437 10.1097/SCS.0000000000000831 |
| ContentType | Journal Article |
| Copyright | 2016 by the Wound Healing Society 2016 by the Wound Healing Society. |
| Copyright_xml | – notice: 2016 by the Wound Healing Society – notice: 2016 by the Wound Healing Society. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1111/wrr.12482 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1524-475X |
| EndPage | 1003 |
| ExternalDocumentID | 27717133 10_1111_wrr_12482 WRR12482 ark_67375_WNG_8MJMSBR0_9 |
| Genre | article Journal Article |
| GroupedDBID | --- .3N .GA .Y3 04C 05W 0R~ 10A 123 1OB 1OC 29R 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOJX ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EAS EBC EBD EBS ECF ECT ECV EIHBH EJD EMB EMK EMOBN ENC EPT ESX EX3 F00 F01 F04 FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQ9 WQJ WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c4292-776298122fd93805b34a0eca9ed823ca0000ff9a2c7f8ed1ca4119b869aefa053 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392825000129&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1067-1927 1524-475X |
| IngestDate | Fri Jul 11 08:14:41 EDT 2025 Thu Apr 03 07:01:22 EDT 2025 Sat Nov 29 04:26:23 EST 2025 Tue Nov 18 19:41:32 EST 2025 Wed Jan 22 16:19:26 EST 2025 Sun Sep 21 06:18:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 by the Wound Healing Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4292-776298122fd93805b34a0eca9ed823ca0000ff9a2c7f8ed1ca4119b869aefa053 |
| Notes | ArticleID:WRR12482 istex:4B3B5176D6B904389CB4AF05690998602BB48512 ark:/67375/WNG-8MJMSBR0-9 Joris A. van Dongen and Hieronymus P. Stevens contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 27717133 |
| PQID | 1835369617 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1835369617 pubmed_primary_27717133 crossref_citationtrail_10_1111_wrr_12482 crossref_primary_10_1111_wrr_12482 wiley_primary_10_1111_wrr_12482_WRR12482 istex_primary_ark_67375_WNG_8MJMSBR0_9 |
| PublicationCentury | 2000 |
| PublicationDate | November/December 2016 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: November/December 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Wound repair and regeneration |
| PublicationTitleAlternate | Wound Rep and Reg |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13 (12):4279-95. Cravy TV. A modified suture placement technique to avoid suture drag or "cheese wire" effect. Ophthalmic Surg 1980; 11 (5): 338-42. Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns 2014; 40 (7): 1375-83. Nery AA, Nascimento IC, Glaser T, Bassaneze V, Krieger JE, Ulrich H. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry Part A 2013; 83 (1): 48-61. Perin EC, Sanz-Ruiz R, Sanchez PL, Lasso J, Perez-Cano R, Alonso-Farto JC, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am Heart J 2014; 168 (1): 88-95.e2. Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 2009; 104 (12): 1410-20. Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 2004; 36 (6): 1031-7. Bauer AL, Jackson TL, Jiang Y. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol 2009; 5 (7): e1000445. Baer PC. Adipose-derived stem cells and their potential to differentiate into the epithelial lineage. Stem Cells Dev 2011; 20 (10): 1805-16. Parvizi M, Harmsen MC. Therapeutic prospect of adipose-derived stromal cells for the treatment of abdominal aortic aneurysm. Stem Cells Dev 2015; 24 (13): 1493-505. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013; 15 (6): 641-8. Semon JA, Zhang X, Pandey AC, Alandete SM, Maness C, Zhang S, et al. Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis. Stem Cells Transl Med 2013; 2 (10): 789-796. Premaratne GU, Ma LP, Fujita M, Lin X, Bollano E, Fu M. Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role. J Cardiothorac Surg 2011; 6: 43. Largo RD, Tchang LA, Mele V, Scherberich A, Harder Y, Wettstein R, et al. Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review. J Plast Reconstr Aesthet Surg 2014; 67 (4): 437-48. Agostini T, Spinelli G, Marino G, Perello R. Esthetic restoration in progressive hemifacial atrophy (Romberg disease): structural fat grafting versus local/free flaps. J Craniofac Surg 2014; 25 (3): 783-7. Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, et al. Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol 2013; 129: 89-115. Tanna N, Broer PN, Roostaeian J, Bradley JP, Levine JP, Saadeh PB. Soft tissue correction of craniofacial microsomia and progressive hemifacial atrophy. J Craniofac Surg 2012; 23 (7 Suppl 1): 2024-7. Guzman C, Bagga M, Kaur A, Westermarck J, Abankwa D. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One 2014; 9 (3): e92444. Willemsen JC, Mulder KM, Stevens HP. Lipofilling with minimal access cranial suspension lifting for enhanced rejuvenation. Aesthet Surg J 2011; 31 (7): 759-69. Charles-de-Sa L, Gontijo-de-Amorim NF, Maeda Takiya C, Borojevic R, Benati D, Bernardi P, et al. Antiaging treatment of the facial skin by fat graft and adipose-derived stem cells. Plast Reconstr Surg 2015; 135 (4): 999-1009. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7 (2): 211-28. Aronowitz JA, Ellenhorn JD. Adipose stromal vascular fraction isolation: a head-to-head comparison of four commercial cell separation systems. Plast Reconstr Surg 2013; 132 (6): 932e-9e. Cai L, Johnstone BH, Cook TG, Liang Z, Traktuev D, Cornetta K, et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells (Dayton, Ohio) 2007; 25 (12): 3234-43. Chavakis E, Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol 2002; 22 (6): 887-93. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109 (10): 1292-8. Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. BioMed Res Int 2014; 2014: 965849. Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 2012; 21 (8): 1299-308. Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol 2003; 200 (4): 423-8. Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 2006; 208 (1): 64-76. Brongo S, Nicoletti GF, La Padula S, Mele CM, D'Andrea F. Use of lipofilling for the treatment of severe burn outcomes. Plast Reconstr Surg 2012; 130 (2): 374e-6e. Lin G, Garcia M, Ning H, Banie L, Guo YL, Lue TF, et al. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 2008; 17 (6): 1053-63. Yim RL, Lee JT, Bow CH, Meij B, Leung V, Cheung KM, et al. A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics. Stem Cells Dev 2014; 23 (21): 2553-67. Pallua N, Baroncini A, Alharbi Z, Stromps JP. Improvement of facial scar appearance and microcirculation by autologous lipofilling. J Plast Reconstr Aesthet Surg 2014;67 (8): 1033-7. 2013; 2 2002; 13 2013; 83 2013; 129 2008; 17 2011; 31 2014; 25 2014; 2014 2004; 109 2014; 40 2011; 6 2014; 67 2014; 23 2015; 24 2012; 130 2006; 208 2013; 15 2001; 7 2015; 135 2004; 36 1980; 11 2002; 22 2011; 20 2013; 132 2009; 5 2014; 9 2012; 23 2003; 200 2012; 21 2009; 104 2007; 25 2014; 168 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Tanna N (e_1_2_7_6_1) 2012; 23 e_1_2_7_19_1 Cravy TV. (e_1_2_7_34_1) 1980; 11 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 Ferroni L (e_1_2_7_11_1) 2013; 129 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
| References_xml | – reference: Perin EC, Sanz-Ruiz R, Sanchez PL, Lasso J, Perez-Cano R, Alonso-Farto JC, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am Heart J 2014; 168 (1): 88-95.e2. – reference: Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109 (10): 1292-8. – reference: Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 2006; 208 (1): 64-76. – reference: Yim RL, Lee JT, Bow CH, Meij B, Leung V, Cheung KM, et al. A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics. Stem Cells Dev 2014; 23 (21): 2553-67. – reference: Tanna N, Broer PN, Roostaeian J, Bradley JP, Levine JP, Saadeh PB. Soft tissue correction of craniofacial microsomia and progressive hemifacial atrophy. J Craniofac Surg 2012; 23 (7 Suppl 1): 2024-7. – reference: Brongo S, Nicoletti GF, La Padula S, Mele CM, D'Andrea F. Use of lipofilling for the treatment of severe burn outcomes. Plast Reconstr Surg 2012; 130 (2): 374e-6e. – reference: Premaratne GU, Ma LP, Fujita M, Lin X, Bollano E, Fu M. Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role. J Cardiothorac Surg 2011; 6: 43. – reference: Cai L, Johnstone BH, Cook TG, Liang Z, Traktuev D, Cornetta K, et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells (Dayton, Ohio) 2007; 25 (12): 3234-43. – reference: Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol 2003; 200 (4): 423-8. – reference: Parvizi M, Harmsen MC. Therapeutic prospect of adipose-derived stromal cells for the treatment of abdominal aortic aneurysm. Stem Cells Dev 2015; 24 (13): 1493-505. – reference: Largo RD, Tchang LA, Mele V, Scherberich A, Harder Y, Wettstein R, et al. Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review. J Plast Reconstr Aesthet Surg 2014; 67 (4): 437-48. – reference: Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns 2014; 40 (7): 1375-83. – reference: Chavakis E, Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol 2002; 22 (6): 887-93. – reference: Pallua N, Baroncini A, Alharbi Z, Stromps JP. Improvement of facial scar appearance and microcirculation by autologous lipofilling. J Plast Reconstr Aesthet Surg 2014;67 (8): 1033-7. – reference: Charles-de-Sa L, Gontijo-de-Amorim NF, Maeda Takiya C, Borojevic R, Benati D, Bernardi P, et al. Antiaging treatment of the facial skin by fat graft and adipose-derived stem cells. Plast Reconstr Surg 2015; 135 (4): 999-1009. – reference: Willemsen JC, Mulder KM, Stevens HP. Lipofilling with minimal access cranial suspension lifting for enhanced rejuvenation. Aesthet Surg J 2011; 31 (7): 759-69. – reference: Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13 (12):4279-95. – reference: Semon JA, Zhang X, Pandey AC, Alandete SM, Maness C, Zhang S, et al. Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis. Stem Cells Transl Med 2013; 2 (10): 789-796. – reference: Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, et al. Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol 2013; 129: 89-115. – reference: Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 2012; 21 (8): 1299-308. – reference: Nery AA, Nascimento IC, Glaser T, Bassaneze V, Krieger JE, Ulrich H. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry Part A 2013; 83 (1): 48-61. – reference: Guzman C, Bagga M, Kaur A, Westermarck J, Abankwa D. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One 2014; 9 (3): e92444. – reference: Lin G, Garcia M, Ning H, Banie L, Guo YL, Lue TF, et al. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 2008; 17 (6): 1053-63. – reference: Baer PC. Adipose-derived stem cells and their potential to differentiate into the epithelial lineage. Stem Cells Dev 2011; 20 (10): 1805-16. – reference: Cravy TV. A modified suture placement technique to avoid suture drag or "cheese wire" effect. Ophthalmic Surg 1980; 11 (5): 338-42. – reference: Bauer AL, Jackson TL, Jiang Y. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol 2009; 5 (7): e1000445. – reference: Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013; 15 (6): 641-8. – reference: Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 2004; 36 (6): 1031-7. – reference: Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. BioMed Res Int 2014; 2014: 965849. – reference: Agostini T, Spinelli G, Marino G, Perello R. Esthetic restoration in progressive hemifacial atrophy (Romberg disease): structural fat grafting versus local/free flaps. J Craniofac Surg 2014; 25 (3): 783-7. – reference: Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7 (2): 211-28. – reference: Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 2009; 104 (12): 1410-20. – reference: Aronowitz JA, Ellenhorn JD. Adipose stromal vascular fraction isolation: a head-to-head comparison of four commercial cell separation systems. Plast Reconstr Surg 2013; 132 (6): 932e-9e. – volume: 67 start-page: 437 issue: 4 year: 2014 end-page: 48 article-title: Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review publication-title: J Plast Reconstr Aesthet Surg – volume: 40 start-page: 1375 issue: 7 year: 2014 end-page: 83 article-title: Stromal vascular fraction improves deep partial thickness burn wound healing publication-title: Burns – volume: 17 start-page: 1053 issue: 6 year: 2008 end-page: 63 article-title: Defining stem and progenitor cells within adipose tissue publication-title: Stem Cells Dev – volume: 135 start-page: 999 issue: 4 year: 2015 end-page: 1009 article-title: Antiaging treatment of the facial skin by fat graft and adipose‐derived stem cells publication-title: Plast Reconstr Surg – volume: 21 start-page: 1299 issue: 8 year: 2012 end-page: 308 article-title: The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells publication-title: Stem Cells Dev – volume: 67 start-page: 1033 issue: 8 year: 2014 end-page: 7 article-title: Improvement of facial scar appearance and microcirculation by autologous lipofilling publication-title: J Plast Reconstr Aesthet Surg – volume: 24 start-page: 1493 issue: 13 year: 2015 end-page: 505 article-title: Therapeutic prospect of adipose‐derived stromal cells for the treatment of abdominal aortic aneurysm publication-title: Stem Cells Dev – volume: 130 start-page: 374e issue: 2 year: 2012 end-page: 6e article-title: Use of lipofilling for the treatment of severe burn outcomes publication-title: Plast Reconstr Surg – volume: 22 start-page: 887 issue: 6 year: 2002 end-page: 93 article-title: Regulation of endothelial cell survival and apoptosis during angiogenesis publication-title: Arterioscler Thromb Vasc Biol – volume: 25 start-page: 783 issue: 3 year: 2014 end-page: 7 article-title: Esthetic restoration in progressive hemifacial atrophy (Romberg disease): structural fat grafting versus local/free flaps publication-title: J Craniofac Surg – volume: 168 start-page: 88 issue: 1 year: 2014 end-page: 95.e2 article-title: Adipose‐derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial publication-title: Am Heart J – volume: 7 start-page: 211 issue: 2 year: 2001 end-page: 28 article-title: Multilineage cells from human adipose tissue: implications for cell‐based therapies publication-title: Tissue Eng – volume: 132 start-page: 932e issue: 6 year: 2013 end-page: 9e article-title: Adipose stromal vascular fraction isolation: a head‐to‐head comparison of four commercial cell separation systems publication-title: Plast Reconstr Surg – volume: 20 start-page: 1805 issue: 10 year: 2011 end-page: 16 article-title: Adipose‐derived stem cells and their potential to differentiate into the epithelial lineage publication-title: Stem Cells Dev – volume: 15 start-page: 641 issue: 6 year: 2013 end-page: 8 article-title: Stromal cells from the adipose tissue‐derived stromal vascular fraction and culture expanded adipose tissue‐derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) publication-title: Cytotherapy – volume: 36 start-page: 1031 issue: 6 year: 2004 end-page: 7 article-title: Tissue repair and the dynamics of the extracellular matrix publication-title: Int J Biochem Cell Biol – volume: 23 start-page: 2024 issue: 7 Suppl 1 year: 2012 end-page: 7 article-title: Soft tissue correction of craniofacial microsomia and progressive hemifacial atrophy publication-title: J Craniofac Surg – volume: 104 start-page: 1410 issue: 12 year: 2009 end-page: 20 article-title: Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells publication-title: Circ Res – volume: 31 start-page: 759 issue: 7 year: 2011 end-page: 69 article-title: Lipofilling with minimal access cranial suspension lifting for enhanced rejuvenation publication-title: Aesthet Surg J – volume: 208 start-page: 64 issue: 1 year: 2006 end-page: 76 article-title: Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates publication-title: J Cell Physiol – volume: 9 start-page: e92444 issue: 3 year: 2014 article-title: ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays publication-title: PLoS One – volume: 109 start-page: 1292 issue: 10 year: 2004 end-page: 8 article-title: Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells publication-title: Circulation – volume: 23 start-page: 2553 issue: 21 year: 2014 end-page: 67 article-title: A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics publication-title: Stem Cells Dev – volume: 129 start-page: 89 year: 2013 end-page: 115 article-title: Potential for neural differentiation of mesenchymal stem cells publication-title: Adv Biochem Eng Biotechnol – volume: 2 start-page: 789 issue: 10 year: 2013 end-page: 796 article-title: Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis publication-title: Stem Cells Transl Med – volume: 6 start-page: 43 year: 2011 article-title: Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti‐inflammatory role publication-title: J Cardiothorac Surg – volume: 13 start-page: 4279 issue: 12 year: 2002 end-page: 95 article-title: Human adipose tissue is a source of multipotent stem cells publication-title: Mol Biol Cell – volume: 5 start-page: e1000445 issue: 7 year: 2009 article-title: Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis publication-title: PLoS Comput Biol – volume: 2014 start-page: 965849 year: 2014 article-title: Prospect of stem cell conditioned medium in regenerative medicine publication-title: BioMed Res Int – volume: 11 start-page: 338 issue: 5 year: 1980 end-page: 42 article-title: A modified suture placement technique to avoid suture drag or “cheese wire” effect publication-title: Ophthalmic Surg – volume: 200 start-page: 423 issue: 4 year: 2003 end-page: 8 article-title: Functional structure and composition of the extracellular matrix publication-title: J Pathol – volume: 83 start-page: 48 issue: 1 year: 2013 end-page: 61 article-title: Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications publication-title: Cytometry Part A – volume: 25 start-page: 3234 issue: 12 year: 2007 end-page: 43 article-title: Suppression of hepatocyte growth factor production impairs the ability of adipose‐derived stem cells to promote ischemic tissue revascularization publication-title: Stem Cells (Dayton, Ohio) – ident: e_1_2_7_4_1 doi: 10.1016/j.bjps.2013.11.011 – ident: e_1_2_7_14_1 doi: 10.1002/cyto.a.22205 – ident: e_1_2_7_22_1 doi: 10.1186/1749-8090-6-43 – ident: e_1_2_7_9_1 doi: 10.1089/scd.2008.0117 – ident: e_1_2_7_12_1 doi: 10.1089/scd.2011.0086 – ident: e_1_2_7_17_1 doi: 10.1097/PRS.0000000000001123 – ident: e_1_2_7_25_1 doi: 10.1016/j.jcyt.2013.02.006 – ident: e_1_2_7_20_1 doi: 10.5966/sctm.2013-0032 – ident: e_1_2_7_32_1 doi: 10.1371/journal.pcbi.1000445 – ident: e_1_2_7_10_1 doi: 10.1155/2014/965849 – ident: e_1_2_7_15_1 doi: 10.1016/j.ahj.2014.03.022 – ident: e_1_2_7_18_1 doi: 10.1002/jcp.20636 – ident: e_1_2_7_24_1 doi: 10.1371/journal.pone.0092444 – ident: e_1_2_7_29_1 doi: 10.1634/stemcells.2007-0388 – ident: e_1_2_7_8_1 doi: 10.1089/scd.2011.0200 – ident: e_1_2_7_30_1 doi: 10.1161/01.CIR.0000121425.42966.F1 – ident: e_1_2_7_27_1 doi: 10.1089/scd.2014.0517 – ident: e_1_2_7_21_1 doi: 10.1016/j.burns.2014.01.023 – ident: e_1_2_7_23_1 doi: 10.1089/107632701300062859 – ident: e_1_2_7_31_1 doi: 10.1161/01.ATV.0000017728.55907.A9 – ident: e_1_2_7_3_1 doi: 10.1016/j.bjps.2014.04.030 – volume: 23 start-page: 2024 issue: 7 year: 2012 ident: e_1_2_7_6_1 article-title: Soft tissue correction of craniofacial microsomia and progressive hemifacial atrophy publication-title: J Craniofac Surg doi: 10.1097/SCS.0b013e31825d0594 – ident: e_1_2_7_16_1 doi: 10.1089/scd.2014.0203 – ident: e_1_2_7_28_1 doi: 10.1161/CIRCRESAHA.108.190926 – volume: 11 start-page: 338 issue: 5 year: 1980 ident: e_1_2_7_34_1 article-title: A modified suture placement technique to avoid suture drag or “cheese wire” effect publication-title: Ophthalmic Surg – ident: e_1_2_7_2_1 doi: 10.1097/PRS.0b013e3182590387 – ident: e_1_2_7_7_1 doi: 10.1177/1090820X11418332 – ident: e_1_2_7_33_1 doi: 10.1016/j.biocel.2003.12.003 – ident: e_1_2_7_13_1 doi: 10.1091/mbc.e02-02-0105 – ident: e_1_2_7_26_1 doi: 10.1097/PRS.0b013e3182a80652 – ident: e_1_2_7_19_1 doi: 10.1002/path.1437 – volume: 129 start-page: 89 year: 2013 ident: e_1_2_7_11_1 article-title: Potential for neural differentiation of mesenchymal stem cells publication-title: Adv Biochem Eng Biotechnol – ident: e_1_2_7_5_1 doi: 10.1097/SCS.0000000000000831 |
| SSID | ssj0005598 |
| Score | 2.4212856 |
| Snippet | Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 994 |
| SubjectTerms | Adipose Tissue - cytology Adipose Tissue - transplantation Adult Cell Differentiation Cell Separation - methods Cells, Cultured Centrifugation Cicatrix - prevention & control Female Flow Cytometry Humans Lipectomy Middle Aged Regeneration - physiology Regenerative Medicine Stromal Cells - cytology Stromal Cells - transplantation Transplantation, Autologous - methods Wound Healing - physiology |
| Title | The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes |
| URI | https://api.istex.fr/ark:/67375/WNG-8MJMSBR0-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fwrr.12482 https://www.ncbi.nlm.nih.gov/pubmed/27717133 https://www.proquest.com/docview/1835369617 |
| Volume | 24 |
| WOSCitedRecordID | wos000392825000129&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1524-475X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005598 issn: 1067-1927 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD7Urg--aMVLV22JIuLLSGYylwSfrLqKtIuslu5byOQiYt1ZMrvqz-9J5qKFCoJvw3DmEPLl3DLnAvC0MEILXrOkqnWe5MqEaYA5T6zL65KlxpQ6dtc_ruZzvlyKjzvwcqiF6fpDjBduQTKivg4Crur2DyH_6f0LNE4c9e8kFFVh5DV5s5idHv_O8ChEVwmHugAdmapvLBQSecaPL5mjSdjZX1f5mpdd12h7Zrf-a9V7cLN3Ocmr7ozchh27ugPneD6I811ZQ0SHNI4o83XdtJZsIhwkWjez9fiiIU0dbhFIu_HNd2Q3pLCOTFqC_i_x9ktsZB20KFkjisiuvQuns7efX79P-skLiQ7jq9DlLjOBpj9zRjBOi5rlilqthDU8Y1oFK-ecUJmuHLcm1SpPU1HzUijrFMr1PdhdNSu7D8QyqlLqaq1YmTtruaNOC6opBl6M5XQKzwcApO7bkofpGOdyCE9wy2Tcsik8GUnXXS-Oq4ieRRRHCuW_heS1qpBn83eSn3w4-XS0oFJM4fEAs0SRCv9J1Mo221ailivCmMO0msL9Dv-RW1Zh_ItxPS47wvz3hcizxSI-PPh30odwAx2ysqt1fAS7G7-1B3Bd_0DY_SFcq5b8sD_lF8GEATo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3bitQwNCwzgr6sipcddTWKiC-VtEnbBHxZL-OqM4OMu-y-hTSXRVynQzqjfr4n6UUXVhB8K-X0cMi5p-eC0NPcCC14RZOy0ixhyoRtgIwn1rGqoKkxhY7T9WflYsFPT8WnHfSy74Vp50MMF25BM6K9DgoeLqT_0PIf3r8A78TBAI9ZQUs-QuM3y-nx7HeJRy7aVjgwBhDJlN1koVDJM3x8wR-Nw9H-vCzYvBi7Ruczvf5_ZN9Au13QiQ9aKbmJduzqFjoHCcHOt40NkT-4dliZL-u6sXgTGYKjfzNbDy9qXFfhHgE3G19_A3R9EeuApMEQAWNvz-Io62BH8Rr4COia2-h4-vbo9WHS7V5IdFhgBUF3kQlw_pkzgnKSV5QpYrUS1vCMahX8nHNCZbp03JpUK5amouKFUNYp0Ow7aLSqV3YPYUuJSomrtKIFc9ZyR5wWRBNIvShlZIKe9xyQuhtMHvZjnMs-QYEjk_HIJujJALpup3FcBvQssnGAUP5rKF8rc3myeCf5_MP886slkWKCHvd8lqBU4U-JWtl620iwc3lYdJiWE3S3FYABW1ZCBgyZPZAd-fx3QuTJchkf7v076CN09fBoPpOz94uP99E1CM-KtvPxARpt_Nbuoyv6O4iAf9gJ-y8LxQRC |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3bahQxNJRdEV-s4qXbWo0i4stIZpKZScCXal1v26WslvYtZHIRsd1ZMrvq53uSuWihguDbMJw5HHLumXNB6GluhBa8oklZaZYwZcI2QMYT61hV0NSYQsfp-rNyPudnZ-J4C73se2Ha-RDDhVvQjGivg4LblXF_aPkP71-Ad-JggMcsFzkbofHhYnoy-13ikYu2FQ6MAUQyZTdZKFTyDB9f8kfjcLQ_rwo2L8eu0flMt_-P7FvoZhd04oNWSm6jLbu8g85BQrDzbWND5A-uHVbm66puLF5HhuDo38zGw4sa11W4R8DN2tcXgK4vYh2QNBgiYOztlzjKOthRvAI-ArrmLjqZvvn8-l3S7V5IdFhgBUF3kQlw_pkzgnKSV5QpYrUS1vCMahX8nHNCZbp03JpUK5amouKFUNYp0Ox7aLSsl3YHYUuJSomrtKIFc9ZyR5wWRBNIvShlZIKe9xyQuhtMHvZjnMs-QYEjk_HIJujJALpqp3FcBfQssnGAUP5bKF8rc3k6fyv50YejT68WRIoJetzzWYJShT8lamnrTSPBzuVh0WFaTtD9VgAGbFkJGTBk9kB25PPfCZGni0V82P130Efo-vHhVM7ezz_uoRsQnRVt4-MDNFr7jd1H1_R3kAD_sJP1X5KrA70 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fractionation+of+adipose+tissue+procedure+to+obtain+stromal+vascular+fractions+for+regenerative+purposes&rft.jtitle=Wound+repair+and+regeneration&rft.au=van+Dongen%2C+Joris+A.&rft.au=Stevens%2C+Hieronymus+P.&rft.au=Parvizi%2C+Mojtaba&rft.au=van+der+Lei%2C+Berend&rft.date=2016-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1067-1927&rft.eissn=1524-475X&rft.volume=24&rft.issue=6&rft.spage=994&rft.epage=1003&rft_id=info:doi/10.1111%2Fwrr.12482&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_8MJMSBR0_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-1927&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-1927&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-1927&client=summon |