Completing the Valdivia–Vogt tables of sequence-space representations of spaces of smooth functions and distributions
In the Valdivia–Vogt structure tables presented in Ortner and Wagner (J Math Anal Appl 404(1):1–10, 2013 ) there are two gaps. We fill in these gaps by proving the representations D F ≅ s ⊗ ^ π C ( N ) and B ˙ ′ ≅ s ′ ⊗ ^ c 0 , where D F is a pre-dual space of the space of distributions of finite or...
Uloženo v:
| Vydáno v: | Monatshefte für Mathematik Ročník 177; číslo 1; s. 1 - 14 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Vienna
Springer Vienna
01.05.2015
|
| Témata: | |
| ISSN: | 0026-9255, 1436-5081 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the Valdivia–Vogt structure tables presented in Ortner and Wagner (J Math Anal Appl 404(1):1–10,
2013
) there are two gaps. We fill in these gaps by proving the representations
D
F
≅
s
⊗
^
π
C
(
N
)
and
B
˙
′
≅
s
′
⊗
^
c
0
, where
D
F
is a pre-dual space of the space of distributions of finite order introduced by J. Horváth and the space
B
˙
′
is the space of distributions vanishing at infinity introduced by L. Schwartz. |
|---|---|
| ISSN: | 0026-9255 1436-5081 |
| DOI: | 10.1007/s00605-014-0650-2 |