A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography

Abstract Background Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process in...

Full description

Saved in:
Bibliographic Details
Published in:European heart journal Vol. 40; no. 43; pp. 3529 - 3543
Main Authors: Oikonomou, Evangelos K, Williams, Michelle C, Kotanidis, Christos P, Desai, Milind Y, Marwan, Mohamed, Antonopoulos, Alexios S, Thomas, Katharine E, Thomas, Sheena, Akoumianakis, Ioannis, Fan, Lampson M, Kesavan, Sujatha, Herdman, Laura, Alashi, Alaa, Centeno, Erika Hutt, Lyasheva, Maria, Griffin, Brian P, Flamm, Scott D, Shirodaria, Cheerag, Sabharwal, Nikant, Kelion, Andrew, Dweck, Marc R, Van Beek, Edwin J R, Deanfield, John, Hopewell, Jemma C, Neubauer, Stefan, Channon, Keith M, Achenbach, Stephan, Newby, David E, Antoniades, Charalambos
Format: Journal Article
Language:English
Published: England Oxford University Press 14.11.2019
Subjects:
ISSN:0195-668X, 1522-9645, 1522-9645
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first