Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models

Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of advances in modeling earth systems Ročník 14; číslo 8; s. e2022MS003130 - n/a
Hlavní autoři: Behrens, Gunnar, Beucler, Tom, Gentine, Pierre, Iglesias‐Suarez, Fernando, Pritchard, Michael, Eyring, Veronika
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States John Wiley & Sons, Inc 01.08.2022
American Geophysical Union (AGU)
Témata:
ISSN:1942-2466, 1942-2466
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non‐linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed‐forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus‐like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large‐scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub‐grid‐scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties. Plain Language Summary Deep neural nets are hard to interpret due to their hundred thousand or million trainable parameters without further postprocessing. We demonstrate in this paper the usefulness of a network type that is designed to drastically reduce this high dimensional information in a lower‐dimensional space to enhance the interpretability of predictions compared to regular deep neural nets. Our approach is, on the one hand, able to reproduce small‐scale cloud related processes in the atmosphere learned from a physical model that simulates these processes skillfully. On the other hand, our network allows us to identify key features of different cloud types in the lower‐dimensional space. Additionally, the lower‐order manifold separates tropical samples from polar ones with a remarkable skill. Overall, our approach has the potential to boost our understanding of various complex processes in Earth System science. Key Points A Variational Encoder Decoder (VED) can predict sub‐grid‐scale thermodynamics from the coarse‐scale climate state The VED's latent space can distinguish convective regimes, including shallow/deep/no convection The VED's latent space reveals the main sources of convective predictability at different latitudes
AbstractList Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non‐linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed‐forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus‐like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large‐scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub‐grid‐scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties.
Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non‐linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed‐forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus‐like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large‐scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub‐grid‐scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties. Plain Language Summary Deep neural nets are hard to interpret due to their hundred thousand or million trainable parameters without further postprocessing. We demonstrate in this paper the usefulness of a network type that is designed to drastically reduce this high dimensional information in a lower‐dimensional space to enhance the interpretability of predictions compared to regular deep neural nets. Our approach is, on the one hand, able to reproduce small‐scale cloud related processes in the atmosphere learned from a physical model that simulates these processes skillfully. On the other hand, our network allows us to identify key features of different cloud types in the lower‐dimensional space. Additionally, the lower‐order manifold separates tropical samples from polar ones with a remarkable skill. Overall, our approach has the potential to boost our understanding of various complex processes in Earth System science. Key Points A Variational Encoder Decoder (VED) can predict sub‐grid‐scale thermodynamics from the coarse‐scale climate state The VED's latent space can distinguish convective regimes, including shallow/deep/no convection The VED's latent space reveals the main sources of convective predictability at different latitudes
Abstract Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non‐linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed‐forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus‐like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large‐scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub‐grid‐scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties.
Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non‐linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed‐forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus‐like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large‐scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub‐grid‐scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties. Deep neural nets are hard to interpret due to their hundred thousand or million trainable parameters without further postprocessing. We demonstrate in this paper the usefulness of a network type that is designed to drastically reduce this high dimensional information in a lower‐dimensional space to enhance the interpretability of predictions compared to regular deep neural nets. Our approach is, on the one hand, able to reproduce small‐scale cloud related processes in the atmosphere learned from a physical model that simulates these processes skillfully. On the other hand, our network allows us to identify key features of different cloud types in the lower‐dimensional space. Additionally, the lower‐order manifold separates tropical samples from polar ones with a remarkable skill. Overall, our approach has the potential to boost our understanding of various complex processes in Earth System science. A Variational Encoder Decoder (VED) can predict sub‐grid‐scale thermodynamics from the coarse‐scale climate state The VED's latent space can distinguish convective regimes, including shallow/deep/no convection The VED's latent space reveals the main sources of convective predictability at different latitudes
Deep learning can accurately represent sub-grid-scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non-linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed-forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus-like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large-scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub-grid-scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties.Deep learning can accurately represent sub-grid-scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non-linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed-forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus-like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large-scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub-grid-scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties.
Author Beucler, Tom
Gentine, Pierre
Pritchard, Michael
Iglesias‐Suarez, Fernando
Eyring, Veronika
Behrens, Gunnar
Author_xml – sequence: 1
  givenname: Gunnar
  orcidid: 0000-0002-5921-5327
  surname: Behrens
  fullname: Behrens, Gunnar
  email: Gunnar.Behrens@dlr.de
  organization: Columbia University
– sequence: 2
  givenname: Tom
  orcidid: 0000-0002-5731-1040
  surname: Beucler
  fullname: Beucler, Tom
  organization: University of Lausanne
– sequence: 3
  givenname: Pierre
  orcidid: 0000-0002-0845-8345
  surname: Gentine
  fullname: Gentine, Pierre
  organization: Columbia University
– sequence: 4
  givenname: Fernando
  orcidid: 0000-0003-3403-8245
  surname: Iglesias‐Suarez
  fullname: Iglesias‐Suarez, Fernando
  organization: Institut für Physik der Atmosphäre
– sequence: 5
  givenname: Michael
  orcidid: 0000-0002-0340-6327
  surname: Pritchard
  fullname: Pritchard, Michael
  organization: University of California Irvine
– sequence: 6
  givenname: Veronika
  orcidid: 0000-0002-6887-4885
  surname: Eyring
  fullname: Eyring, Veronika
  organization: Institute of Environmental Physics (IUP)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36245669$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1881374$$D View this record in Osti.gov
BookMark eNp9kU1vFDEMhiNURD_gxhlFcOHQLfmYZDLHatkC1S4goHCMMhmPmmo2KUmm1R6Q-hP4jfwS0k4rVZXgZFt-Xst-vYu2fPCA0HNKDihhzRtGGFt9JYRTTh6hHdpUbMYqKbfu5dtoN6UzQqSUTDxB21yySkjZ7KBfH4P_c_V76TyYiN-6NfjkgjeDyxv8BbrR5lLiHy6fYoO_m-hMvunjhbehg6KBKeaAT3xJUja-w_PgL6BoLwB_jsFCSpCw83g-uLXJgFdFM6Sn6HFvhgTPbuMeOjlafJu_ny0_vfswP1zObMUUmUHNGqpEyxvb075hyghCoOVV21nV963oDLAWKIUGhBS16lrDOBDoueW1AL6HXk5zQ8pOJ-sy2FMbvC8raqoU5XVVoNcTdB7DzxFS1muXLAyD8RDGpFnNRMWVYk1BXz1Az8IYiyvXFKmFqiRRhXpxS43tGjp9HsvtcaPv3C8AmwAbQ0oRel02u_E3R-MGTYm-frG-_-Ii2n8gupv7D5xP-KUbYPNfVh8frhaMSkn4X2wfthQ
CitedBy_id crossref_primary_10_1017_eds_2025_17
crossref_primary_10_1029_2024MS004272
crossref_primary_10_1007_s13253_023_00539_0
crossref_primary_10_1029_2024MS004398
crossref_primary_10_1038_s41370_024_00712_8
crossref_primary_10_1029_2024MS004401
crossref_primary_10_1038_s41561_024_01527_w
crossref_primary_10_3390_app14198884
crossref_primary_10_1016_j_buildenv_2024_112325
crossref_primary_10_1017_eds_2025_10010
crossref_primary_10_1029_2024JD041167
crossref_primary_10_1007_s13143_023_00330_8
crossref_primary_10_5194_amt_16_911_2023
crossref_primary_10_1029_2024JD041954
Cites_doi 10.3894/james.2009.1.12
10.1029/2020ms002076
10.1175/jas3453.1
10.1029/2019JD032321
10.1145/3429309.3429324
10.1175/1520-0469(2001)058<0978:ccpwtl>2.0.co;2
10.1016/j.dynatmoce.2015.05.003
10.1017/CBO9781139087513
10.1073/pnas.1810286115
10.1109/CVPR.2019.01269
10.1029/2001GL013552
10.1038/nclimate3190
10.1038/ngeo2398
10.1175/1520-0469(2000)057<1741:aqetcm>2.0.co;2
10.1175/BAMS-84-11-1547
10.2151/jmsj.2020-021
10.1002/2014ms000340
10.1175/jas-d-13-0119.1
10.1175/JAS-D-11-0148.1
10.1175/JCLI-D-17-0590.1
10.1256/qj.03.130
10.1007/s00382-013-1678-z
10.1002/2013GL057998
10.1029/2018GL078202
10.1175/JCLI3762.1
10.1093/oso/9780195066302.001.0001
10.1029/2020ms002385
10.1175/jas3677.1
10.1029/2004RG000158
10.1175/1520-0469(2003)060<0607:crmota>2.0.co;2
10.1038/s41467-020-17142-3
10.1175/JCLI-D-11-00168.1
ContentType Journal Article
Copyright 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Columbia Univ., New York, NY (United States)
CorporateAuthor_xml – name: Columbia Univ., New York, NY (United States)
DBID 24P
AAYXX
CITATION
NPM
7TG
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
OTOTI
DOI 10.1029/2022MS003130
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
CrossRef
PubMed
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (New)
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Environmental Sciences
EISSN 1942-2466
EndPage n/a
ExternalDocumentID 1881374
36245669
10_1029_2022MS003130
JAME21660
Genre article
Journal Article
GrantInformation_xml – fundername: EC ERC HORIZON EUROPE European Research Council
  funderid: 855187
– fundername: Advanced Research Projects Agency - Energy
  funderid: DE‐SC0022331
– fundername: National Science Foundation Science and Technology Center Learning the Earth with Artificial intelligence and Physics
  funderid: 2019625
– fundername: Columbia sub‐award 1
  funderid: PG010560‐01
– fundername: Deutsches Klimarechenzentrum
  funderid: 1179
GroupedDBID 0R~
1OC
24P
29J
31~
5VS
8-1
8FE
8FH
AAHHS
AAZKR
ABDBF
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZFZN
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
D1K
EAD
EAP
EAS
EBS
EJD
EPL
ESX
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IGS
IPNFZ
ITC
K6-
KQ8
LK5
M7R
M~E
O9-
OK1
P2P
PCBAR
PIMPY
PROAC
RIG
RNS
TUS
WIN
~OA
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
HZ~
PHGZM
PHGZT
NPM
7TG
ABUWG
AZQEC
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
ABPTK
AEUQT
OTOTI
ID FETCH-LOGICAL-c4280-e729185b39cf1f928a500eb34bdc8ffb5dae2be11e9e56578dba23e0ef3c375e3
IEDL.DBID BENPR
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000842506900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1942-2466
IngestDate Mon Aug 28 20:02:17 EDT 2023
Thu Sep 04 17:36:19 EDT 2025
Mon Oct 06 17:29:51 EDT 2025
Mon Jul 21 05:57:47 EDT 2025
Tue Nov 18 22:36:14 EST 2025
Sat Nov 29 02:09:16 EST 2025
Wed Jan 22 16:23:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords convection
explainable artificial intelligence
parameterization
dimensionality reduction
generative deep learning
machine learning
Language English
License Attribution-NonCommercial
2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4280-e729185b39cf1f928a500eb34bdc8ffb5dae2be11e9e56578dba23e0ef3c375e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
National Science Foundation Science and Technology Center
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Columbia University
European Research Council (ERC)
SC0022331; 855187; PG010560-01; 2019625
ORCID 0000-0002-0845-8345
0000-0002-5731-1040
0000-0002-0340-6327
0000-0002-5921-5327
0000-0003-3403-8245
0000-0002-6887-4885
0000000268874885
0000000203406327
0000000259215327
0000000208458345
0000000257311040
0000000334038245
OpenAccessLink https://www.proquest.com/docview/2707584608?pq-origsite=%requestingapplication%
PMID 36245669
PQID 2707584608
PQPubID 616667
PageCount 0
ParticipantIDs osti_scitechconnect_1881374
proquest_miscellaneous_2725438829
proquest_journals_2707584608
pubmed_primary_36245669
crossref_citationtrail_10_1029_2022MS003130
crossref_primary_10_1029_2022MS003130
wiley_primary_10_1029_2022MS003130_JAME21660
PublicationCentury 2000
PublicationDate August 2022
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of advances in modeling earth systems
PublicationTitleAlternate J Adv Model Earth Syst
PublicationYear 2022
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2017; 7
2015; 71
2013; 40
2013; 41
2005; 62
2006; 19
2005; 43
1994
2020; 12
2001; 28
2020; 11
2020; 125
2020; 98
2018; 45
2015; 8
2021; 13
2019; 2426
2006; 63
2022
2021
2020
2000; 57
2004; 130
2018; 115
2019
2018
2016
1996; 1
2014
2012; 25
2012; 69
2003; 60
2009; 2
2003; 84
2001; 58
2018; 31
2014; 71
2014; 6
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
Alemi A. (e_1_2_8_3_1) 2018
e_1_2_8_27_1
Mamalakis A. (e_1_2_8_26_1) 2021
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_1
Krinitskiy M. A. (e_1_2_8_23_1) 2019; 2426
e_1_2_8_20_1
e_1_2_8_42_1
Emanuel K. (e_1_2_8_9_1) 1994
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
Alberdi X.‐A. T. (e_1_2_8_2_1) 2018
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Wang P. (e_1_2_8_39_1) 2022
Kingma D. P. (e_1_2_8_22_1) 2014
Wang X. (e_1_2_8_40_1) 2021
Kingma D. P. (e_1_2_8_21_1) 2014
Lorenz E. N. (e_1_2_8_25_1) 1996; 1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 58
  start-page: 978
  issue: 9
  year: 2001
  end-page: 997
  article-title: Coupling cloud processes with the large‐scale dynamics using the clouds‐resolving convection parameterization (CRCP)
  publication-title: Journal of the Atmospheric Sciences
– year: 2020
  article-title: Generative modeling of atmospheric convection
  publication-title: arXiv
– volume: 71
  start-page: 800
  issue: 2
  year: 2014
  end-page: 815
  article-title: Causal evidence that rotational moisture advection is critical to the superparameterized madden–julian oscillation
  publication-title: Journal of the Atmospheric Sciences
– volume: 8
  start-page: 261
  issue: 4
  year: 2015
  end-page: 268
  article-title: Clouds, circulation and climate sensitivity
  publication-title: Nature Geoscience
– volume: 43
  issue: 2
  year: 2005
  article-title: Madden‐julian oscillation
  publication-title: Reviews of Geophysics
– volume: 125
  start-page: 1
  issue: 21
  year: 2020
  end-page: 28
  article-title: Quantifying progress across different CMIP phases with the ESMValTool
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 115
  start-page: 9684
  issue: 39
  year: 2018
  end-page: 9689
  article-title: Deep learning to represent subgrid processes in climate models
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 159
  year: 2018
  end-page: 168
– volume: 13
  issue: 5
  year: 2021
  article-title: Assessing the potential of deep learning for emulating cloud superparameterization in climate models with real‐geography boundary conditions
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 10
  article-title: Stable machine‐learning parameterization of subgrid processes for climate modeling at a range of resolutions
  publication-title: Nature Communications
– year: 2021
  article-title: Neural network attribution methods for problems in geoscience: A novel synthetic benchmark dataset
  publication-title: arXiv preprint arXiv:2103.10005
– volume: 41
  start-page: 1527
  issue: 5–6
  year: 2013
  end-page: 1551
  article-title: Stochastic and deterministic multicloud parameterizations for tropical convection
  publication-title: Climate Dynamics
– volume: 2426
  start-page: 52
  year: 2019
  end-page: 61
  article-title: Clustering of polar vortex states using convolutional autoencoders
  publication-title: CEUR Workshop Proceedings
– start-page: 1
  year: 2021
  end-page: 35
  article-title: Stable climate simulations using a realistic gcm with neural network parameterizations for atmospheric moist physics and radiation processes
  publication-title: Geoscientific Model Development Discussions
– year: 2016
– volume: 57
  start-page: 1741
  issue: 11
  year: 2000
  end-page: 1766
  article-title: A quasi‐equilibrium tropical circulation model—Formulation
  publication-title: Journal of the Atmospheric Sciences
– year: 2018
– year: 1994
– year: 2014
– volume: 63
  start-page: 1308
  issue: 4
  year: 2006
  end-page: 1323
  article-title: A simple multicloud parameterization for convectively coupled tropical waves. part i: Linear analysis
  publication-title: Journal of the Atmospheric Sciences
– volume: 12
  issue: 9
  year: 2020
  article-title: A moist physics parameterization based on deep learning
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 6
  start-page: 723
  issue: 3
  year: 2014
  end-page: 739
  article-title: Restricting 32–128 km horizontal scales hardly affects the mjo in the superparameterized community atmosphere model v. 3.0 but the number of cloud‐resolving grid columns constrains vertical mixing
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 2
  year: 2009
  article-title: Assessing the diurnal cycle of precipitation in a multi‐scale climate model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 71
  start-page: 35
  year: 2015
  end-page: 55
  article-title: Cloud‐radiation feedback and atmosphere‐ocean coupling in a stochastic multicloud model
  publication-title: Dynamics of Atmospheres and Oceans
– year: 2014
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
– volume: 1
  year: 1996
  article-title: Predictability: A problem partly solved
  publication-title: Proc. seminar on predictability
– volume: 45
  start-page: 5742
  issue: 11
  year: 2018
  end-page: 5751
  article-title: Could machine learning break the convection parameterization deadlock?
  publication-title: Geophysical Research Letters
– start-page: 12406
  year: 2019
  end-page: 12415
– volume: 7
  start-page: 3
  issue: 1
  year: 2017
  end-page: 5
  article-title: Climate goals and computing the future of clouds
  publication-title: Nature Climate Change
– volume: 40
  start-page: 5970
  issue: 22
  year: 2013
  end-page: 5976
  article-title: Beyond deadlock
  publication-title: Geophysical Research Letters
– volume: 28
  start-page: 3617
  issue: 18
  year: 2001
  end-page: 3620
  article-title: A cloud resolving model as a cloud parameterization in the NCAR community climate system model: Preliminary results
  publication-title: Geophysical Research Letters
– volume: 62
  start-page: 2136
  issue: 7
  year: 2005
  end-page: 2154
  article-title: Simulations of the atmospheric general circulation using a cloud‐resolving model as a superparameterization of physical processes
  publication-title: Journal of the Atmospheric Sciences
– volume: 25
  start-page: 2782
  issue: 8
  year: 2012
  end-page: 2804
  article-title: Moist static energy budget of MJO‐like disturbances in the atmosphere of a zonally symmetric aquaplanet
  publication-title: Journal of Climate
– volume: 84
  start-page: 1547
  issue: 11
  year: 2003
  end-page: 1564
  article-title: Breaking the cloud parameterization deadlock
  publication-title: Bulletin of the American Meteorological Society
– volume: 31
  start-page: 2563
  issue: 7
  year: 2018
  end-page: 2577
  article-title: Assessing the vertical latent heating structure of the east Pacific itcz using the cloudsat cpr and trmm pr
  publication-title: Journal of Climate
– volume: 60
  start-page: 607
  issue: 4
  year: 2003
  end-page: 625
  article-title: Cloud resolving modeling of the arm summer 1997 iop: Model formulation, results, uncertainties, and sensitivities
  publication-title: Journal of the Atmospheric Sciences
– volume: 130
  start-page: 3055
  issue: 604
  year: 2004
  end-page: 3079
  article-title: Sensitivity of moist convection to environmental humidity
  publication-title: Quarterly Journal of the Royal Meteorological Society
– year: 2022
  article-title: Non‐local parameterization of atmospheric subgrid processes with neural networks
  publication-title: arXiv preprint arXiv:2201.00417
– volume: 98
  start-page: 395
  issue: 2
  year: 2020
  end-page: 435
  article-title: The added value of large‐eddy and storm‐resolving models for simulating clouds and precipitation
  publication-title: Journal of the Meteorological Society of Japan
– volume: 69
  start-page: 1080
  issue: 3
  year: 2012
  end-page: 1105
  article-title: Using the stochastic multicloud model to improve tropical convective parameterization: A paradigm example
  publication-title: Journal of the Atmospheric Sciences
– volume: 19
  start-page: 2162
  issue: 11
  year: 2006
  end-page: 2183
  article-title: The dynamical simulation of the Community Atmosphere Model version 3 (CAM3)
  publication-title: Journal of Climate
– ident: e_1_2_8_32_1
  doi: 10.3894/james.2009.1.12
– ident: e_1_2_8_15_1
  doi: 10.1029/2020ms002076
– ident: e_1_2_8_17_1
  doi: 10.1175/jas3453.1
– ident: e_1_2_8_5_1
  doi: 10.1029/2019JD032321
– ident: e_1_2_8_28_1
  doi: 10.1145/3429309.3429324
– ident: e_1_2_8_14_1
  doi: 10.1175/1520-0469(2001)058<0978:ccpwtl>2.0.co;2
– year: 2014
  ident: e_1_2_8_21_1
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
– ident: e_1_2_8_12_1
  doi: 10.1016/j.dynatmoce.2015.05.003
– ident: e_1_2_8_24_1
  doi: 10.1017/CBO9781139087513
– ident: e_1_2_8_35_1
  doi: 10.1073/pnas.1810286115
– ident: e_1_2_8_36_1
  doi: 10.1109/CVPR.2019.01269
– ident: e_1_2_8_18_1
  doi: 10.1029/2001GL013552
– ident: e_1_2_8_37_1
  doi: 10.1038/nclimate3190
– ident: e_1_2_8_6_1
  doi: 10.1038/ngeo2398
– ident: e_1_2_8_29_1
  doi: 10.1175/1520-0469(2000)057<1741:aqetcm>2.0.co;2
– ident: e_1_2_8_34_1
  doi: 10.1175/BAMS-84-11-1547
– volume-title: 8th international workshop on climate informatics
  year: 2018
  ident: e_1_2_8_2_1
– volume: 1
  year: 1996
  ident: e_1_2_8_25_1
  article-title: Predictability: A problem partly solved
  publication-title: Proc. seminar on predictability
– ident: e_1_2_8_38_1
  doi: 10.2151/jmsj.2020-021
– volume-title: 2nd international conference on learning representations. ICLR 2014–Conference track proceedings (Ml)
  year: 2014
  ident: e_1_2_8_22_1
– ident: e_1_2_8_31_1
  doi: 10.1002/2014ms000340
– ident: e_1_2_8_30_1
  doi: 10.1175/jas-d-13-0119.1
– start-page: 159
  volume-title: International conference on machine learning
  year: 2018
  ident: e_1_2_8_3_1
– volume: 2426
  start-page: 52
  year: 2019
  ident: e_1_2_8_23_1
  article-title: Clustering of polar vortex states using convolutional autoencoders
  publication-title: CEUR Workshop Proceedings
– ident: e_1_2_8_10_1
  doi: 10.1175/JAS-D-11-0148.1
– ident: e_1_2_8_16_1
  doi: 10.1175/JCLI-D-17-0590.1
– ident: e_1_2_8_8_1
  doi: 10.1256/qj.03.130
– ident: e_1_2_8_11_1
  doi: 10.1007/s00382-013-1678-z
– ident: e_1_2_8_33_1
  doi: 10.1002/2013GL057998
– ident: e_1_2_8_13_1
  doi: 10.1029/2018GL078202
– year: 2021
  ident: e_1_2_8_26_1
  article-title: Neural network attribution methods for problems in geoscience: A novel synthetic benchmark dataset
  publication-title: arXiv preprint arXiv:2103.10005
– ident: e_1_2_8_7_1
  doi: 10.1175/JCLI3762.1
– volume-title: Atmospheric convection
  year: 1994
  ident: e_1_2_8_9_1
  doi: 10.1093/oso/9780195066302.001.0001
– ident: e_1_2_8_27_1
  doi: 10.1029/2020ms002385
– ident: e_1_2_8_20_1
  doi: 10.1175/jas3677.1
– year: 2022
  ident: e_1_2_8_39_1
  article-title: Non‐local parameterization of atmospheric subgrid processes with neural networks
  publication-title: arXiv preprint arXiv:2201.00417
– ident: e_1_2_8_42_1
  doi: 10.1029/2004RG000158
– ident: e_1_2_8_19_1
  doi: 10.1175/1520-0469(2003)060<0607:crmota>2.0.co;2
– ident: e_1_2_8_41_1
  doi: 10.1038/s41467-020-17142-3
– start-page: 1
  year: 2021
  ident: e_1_2_8_40_1
  article-title: Stable climate simulations using a realistic gcm with neural network parameterizations for atmospheric moist physics and radiation processes
  publication-title: Geoscientific Model Development Discussions
– ident: e_1_2_8_4_1
  doi: 10.1175/JCLI-D-11-00168.1
SSID ssj0066625
Score 2.425156
Snippet Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning...
Deep learning can accurately represent sub-grid-scale convective processes in climate models, learning from high resolution simulations. However, deep learning...
Abstract Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2022MS003130
SubjectTerms Atmosphere
Climate
Climate models
Clouds
Convection
Cumulus clouds
Deep learning
Diabatic heating
dimensionality reduction
Dimensions
ENVIRONMENTAL SCIENCES
explainable artificial intelligence
generative deep learning
Long wave radiation
Machine learning
Modelling
Moisture content
parameterization
Precipitation
Radiation
Simulation
Topography
SummonAdditionalLinks – databaseName: Open Access: Wiley-Blackwell Open Access Journals
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LatwwFBVhmkU3bdOnk7Qo0HTTmloP2_KyTCZ0kyHk1eyMJMtkYLDL2OkukE_IN_ZLeq-sMQm0hdKVMZKwsO6VzrmSziXkvRaJVRWvgeToNJbKgM_Zuoil4NrItLJWDMkm8vlcXV4WxyHghndhBn2IMeCGnuHna3RwbbogNoAamcDa-dGp1x4Eyv6IMaEwdQOXx-uZGJC5T7oKPJ3HXGZZOPgO7T_fb_1gSZq04Fq_g5sP0atffg6f_m_Hn5EnAXjSL4OlbJEN1zwn0RFg5nblQ-v0A50uFwBg_dsLcjNvm5-3d0BWwRnoAWYBGBQ8ALfTE1R8xTGl3xb9FdX0Ajh3iCvSWYMX5aGNG559S8_HOzR0iufc_SxLwy0F19FFEz7uKGZnW3Yvyfnh7Gz6NQ7JGmILDCaJHaB0WPuNKGzN6oIrTLUATF2ayqq6NmmlHTeOMVc43GpVldFcuMTVwoo8deIVmTRt494QKhOTgoFXKre51JapXNQpzDOJTVgleR6Rj-vxKm1QMseEGsvS76jzorz_iyOyP9b-Pih4_KHeDg59CcgD5XMtnjOyfcmUYiKXEdldW0QZvLwreQ6ACwBcoiKyNxaDf-Kmi25ce411UG4AeEwRkdeDJY3dAPAA-DWDkk_eYP7avxJW4RlnWZZs_1v1HfIYC4ZTi7tk0q-u3VuyaX_0i271znvMLz40FJ0
  priority: 102
  providerName: Wiley-Blackwell
Title Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022MS003130
https://www.ncbi.nlm.nih.gov/pubmed/36245669
https://www.proquest.com/docview/2707584608
https://www.proquest.com/docview/2725438829
https://www.osti.gov/biblio/1881374
Volume 14
WOSCitedRecordID wos000842506900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: PCBAR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: BENPR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: PIMPY
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: WIN
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: 24P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB6xXQ5c-P8Ju1RGAi4QrWM7jXNCULJiD42ihWXLKUocR1SqkqXpcgPxCDwjT8JM4hZWgr1wSZXGUSyNZ-ab8fgbgCeF5EZXosYgpwh9pUvUOVPHvpKiKFVYGSOHZhNRmur5PM5cwq1zZZUbm9gb6qo1lCM_EBE6N3SWXL88--xT1yjaXXUtNHZgl5jK1Ah2XydpdryxxYjNRejK3bmIKdIXs3c9XyG_4IhGLSrU30DmRczaO53DG_873Ztw3cFN9mpYH7fgim1ugzdDpNyu-oQ6e8amywXC1v7uDnxN2-bn9x8YoqIKsDfE_T_wdiBaZ8fE80qSZKeL9SdWsA8YabtsIksaOh6P79jhd92yk-3JGTal6vbetjJ3NsF2bNG4j1tGPdmW3V04OUzeT9_6rkWDbzBu4b5FbI4ev5SxqYM6FpoaLGB8rsrK6Louw6qworRBYGNLG6y6KgshLbe1NDIKrbwHo6Zt7ANgipchLutKRyZShQl0JOsQrQs3PKiUiDx4vpFXbhx_ObXRWOb9PrqI8z-l68HT7eizgbfjH-P2SPQ54g0izTVUXWTWeaB1ICPlwf5GurnT7S7_LVoPHm8fo1bSVkvR2PacxhDJAEYvsQf3h5W0nQZCBkStE3zyol9al84vR9-biGAy4Q8vn8seXKP3htrEfRitV-f2EVw1X9aLbjWGHaEyvEZzPXY6Mu7TD3idfUvwv-xoln3Eu9Oj9BdhIx0Y
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLRJcKL8lbQEjUS4Q1bGTjXNACG236qrd1QpaWk4hcRwRaZW0mxTUAxKPwJPwUDwJM_lZqAS99cApiuI4I-fzzDf2eAbgWSS5VolI0cmJPNtVMc45nQa2K0UUu16itWyKTfiTiTo-DqZL8KM7C0NhlZ1OrBV1UmhaI98SPho3NJZcvT45talqFO2udiU0GljsmfMv6LKVr0bb-H83hdgZHgx27baqgK2RanPbIJ1EIxXLQKdOGghFNQHQpXTjRKs0jb0kMiI2jmMCQ3uCKokjIQ03qdTS94zEfq_BsotgVz1Yno7G0w-d7kdfQHhteD0XAa0siPG7Oj8iv2D4egVO4L-R2oscuTZyOyv_2_DchlstnWZvGvzfgSWT3wVrjJ5AMa83DNhzNphlSMvru3vwdVLkP799RxcchWXbVNugyUuC3gh7S3lsCansKKs-sYi9j-ZZu1rKhjkd_8d3THOtCna4OBnEBhS9X9sO1p69MCXL8vbjhlHNuVl5Hw6vZDQeQC8vcvMQmMtjD6dtonztu5F2lC9TD7Un19xJXOFb8KLDR6jb_OxUJmQW1nECIgj_RJMFm4vWJ01ekn-0WyeohcinKCmwpugpXYWOUo70XQs2OjSFre4qw99QsuDp4jFqHdpKinJTnFEbSqKA3llgwWqD3IUYSImQlffxycsaypfKFyK3GAqn3-drl8vyBG7sHoz3w_3RZG8dblIfTRzmBvSq-Zl5BNf15yor54_bOcng41Xj_BfNanVd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLUJc-P8JLWAkygWiOnaycQ4Iof0Rq7KrFVBaTiFxHBFplZTNFsQBiUfgeXgcnoSZxFmoBL31wCmK4jiW883MN_Z4BuBhIrlWmcjRyUkC11cpypzOI9eXIkn9INNatsUmwtlMHR5G8w340Z2FobDKTic2ijqrNK2R74oQjRsaS652cxsWMR-Onx19dKmCFO20duU0WojsmS-f0X2rn06G-K93hBiP3gxeuLbCgKuRdnPXILVEg5XKSOdeHglF9QHQvfTTTKs8T4MsMSI1nmciQ_uDKksTIQ03udQyDIzEfs_BJlJyH2Vscz6Zzt91dgD9AhHYUHsuIlplENPXTa5EfsII9ioU5r8R3JN8uTF448v_81RdgUuWZrPnrVxchQ1TXgNnih5CtWw2EtgjNlgUSNebu-vwdVaVP799R9ccB8uGVPOgzVeCXgp7RfltCcHsoFh9YAl7mywLu4rKRiWlBcB3THtdVWx_fWKIDSiqv7EpzJ7JMDUrSvtxw6gW3aK-AftnMhs3oVdWpbkNzOdpgOKcqVCHfqI9Fco8QK3KNfcyX4QOPO6wEmubt53KhyziJn5ARPGfyHJgZ936qM1X8o92WwS7GHkWJQvWFFWlV7GnlCdD34HtDlmx1Wl1_BtWDjxYP0ZtRFtMSWmqY2pDyRXQa4scuNWieD0MpErI1vv45EkD61PHFyPnGAmv3-d3Th_LfbiA4I5fTmZ7W3CRumjDM7eht1oem7twXn9aFfXynhVPBu_PGua_AFEPfh0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%90Linear+Dimensionality+Reduction+With+a+Variational+Encoder+Decoder+to+Understand+Convective+Processes+in+Climate+Models&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Behrens%2C+Gunnar&rft.au=Beucler%2C+Tom&rft.au=Gentine%2C+Pierre&rft.au=Iglesias%E2%80%90Suarez%2C+Fernando&rft.date=2022-08-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.issn=1942-2466&rft.eissn=1942-2466&rft.volume=14&rft.issue=8&rft_id=info:doi/10.1029%2F2022MS003130&rft.externalDocID=1881374
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon