Algorithm-based fault tolerance applied to high performance computing

We present a new approach to fault tolerance for High Performance Computing system. Our approach is based on a careful adaptation of the Algorithm-Based Fault Tolerance technique [K. Huang, J. Abraham, Algorithm-based fault tolerance for matrix operations, IEEE Transactions on Computers (Spec. Issue...

Full description

Saved in:
Bibliographic Details
Published in:Journal of parallel and distributed computing Vol. 69; no. 4; pp. 410 - 416
Main Authors: Bosilca, George, Delmas, Rémi, Dongarra, Jack, Langou, Julien
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Inc 01.04.2009
Elsevier
Subjects:
ISSN:0743-7315, 1096-0848
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a new approach to fault tolerance for High Performance Computing system. Our approach is based on a careful adaptation of the Algorithm-Based Fault Tolerance technique [K. Huang, J. Abraham, Algorithm-based fault tolerance for matrix operations, IEEE Transactions on Computers (Spec. Issue Reliable & Fault-Tolerant Comp.) 33 (1984) 518–528] to the need of parallel distributed computation. We obtain a strongly scalable mechanism for fault tolerance. We can also detect and correct errors (bit-flip) on the fly of a computation. To assess the viability of our approach, we have developed a fault-tolerant matrix–matrix multiplication subroutine and we propose some models to predict its running time. Our parallel fault-tolerant matrix–matrix multiplication scores 1.4 TFLOPS on 484 processors (cluster jacquard.nersc.gov) and returns a correct result while one process failure has happened. This represents 65% of the machine peak efficiency and less than 12% overhead with respect to the fastest failure-free implementation. We predict (and have observed) that, as we increase the processor count, the overhead of the fault tolerance drops significantly.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0743-7315
1096-0848
DOI:10.1016/j.jpdc.2008.12.002