Algorithm-based fault tolerance applied to high performance computing
We present a new approach to fault tolerance for High Performance Computing system. Our approach is based on a careful adaptation of the Algorithm-Based Fault Tolerance technique [K. Huang, J. Abraham, Algorithm-based fault tolerance for matrix operations, IEEE Transactions on Computers (Spec. Issue...
Uloženo v:
| Vydáno v: | Journal of parallel and distributed computing Ročník 69; číslo 4; s. 410 - 416 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
01.04.2009
Elsevier |
| Témata: | |
| ISSN: | 0743-7315, 1096-0848 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a new approach to fault tolerance for High Performance Computing system. Our approach is based on a careful adaptation of the Algorithm-Based Fault Tolerance technique [K. Huang, J. Abraham, Algorithm-based fault tolerance for matrix operations, IEEE Transactions on Computers (Spec. Issue Reliable & Fault-Tolerant Comp.) 33 (1984) 518–528] to the need of parallel distributed computation. We obtain a strongly scalable mechanism for fault tolerance. We can also detect and correct errors (bit-flip) on the fly of a computation. To assess the viability of our approach, we have developed a fault-tolerant matrix–matrix multiplication subroutine and we propose some models to predict its running time. Our parallel fault-tolerant matrix–matrix multiplication scores 1.4 TFLOPS on 484 processors (cluster
jacquard.nersc.gov) and returns a correct result while one process failure has happened. This represents 65% of the machine peak efficiency and less than 12% overhead with respect to the fastest failure-free implementation. We predict (and have observed) that, as we increase the processor count, the overhead of the fault tolerance drops significantly. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0743-7315 1096-0848 |
| DOI: | 10.1016/j.jpdc.2008.12.002 |