A New Approach to Defining Uncertainties for MODIS Land Surface Temperature

The accuracy of land surface temperature (LST) observations is critical to many applications. Any observation of LST is subject to incomplete knowledge, so an accurate assessment of the uncertainty budget is critical. We present a comprehensive and consistent approach to determining an uncertainty b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 11; číslo 9; s. 1021
Hlavní autoři: Ghent, Darren, Veal, Karen, Trent, Tim, Dodd, Emma, Sembhi, Harjinder, Remedios, John
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2019
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The accuracy of land surface temperature (LST) observations is critical to many applications. Any observation of LST is subject to incomplete knowledge, so an accurate assessment of the uncertainty budget is critical. We present a comprehensive and consistent approach to determining an uncertainty budget for LST products. We apply this approach to the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on-board the Aqua satellite. In order to generate the uncertainty model, a new implementation of the generalised split-window algorithm is applied, in which retrieval coefficients are categorised by viewing angle and water vapour. Validation of the LST against in situ data shows a mean absolute bias of 0.37 K for daytime and 0.73 K for nighttime. The average standard deviation per site is 1.53 K for daytime and 1.21 K for nighttime. Uncertainties from the implemented model are estimates in their own right and are also validated. We do this by comparing the standard deviation of the differences between the satellite and in situ LSTs, and the total uncertainties of the validation matchups. We show that the uncertainty model provides a good fit. Our approach offers a framework for quantifying uncertainties for LST that is equally applicable across different sensors and different retrieval approaches.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2072-4292
2072-4292
DOI:10.3390/rs11091021