Analysis of Energy-Efficient Connected Target Coverage Algorithms for Industrial Wireless Sensor Networks

Recent breakthroughs in wireless technologies have greatly spurred the emergence of industrial wireless sensor networks (IWSNs). To facilitate the adaptation of IWSNs to industrial applications, concerns about networks' full coverage and connectivity must be addressed to fulfill reliability and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics Vol. 13; no. 1; pp. 135 - 143
Main Authors: Guangjie Han, Li Liu, Jinfang Jiang, Lei Shu, Hancke, Gerhard
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.02.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1551-3203, 1941-0050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent breakthroughs in wireless technologies have greatly spurred the emergence of industrial wireless sensor networks (IWSNs). To facilitate the adaptation of IWSNs to industrial applications, concerns about networks' full coverage and connectivity must be addressed to fulfill reliability and real-time requirements. Although connected target coverage (CTC) algorithms in general sensor networks have been extensively studied, little attention has been paid to reveal both the applicability and limitations of different coverage strategies from an industrial viewpoint. In this paper, we analyze characteristics of four recent energy-efficient coverage strategies by carefully choosing four representative connected coverage algorithms: 1) communication weighted greedy cover; 2) optimized connected coverage heuristic; 3) overlapped target and connected coverage; and 4) adjustable range set covers. Through a detailed comparison in terms of network lifetime, coverage time, average energy consumption, ratio of dead nodes, etc., characteristics of basic design ideas used to optimize coverage and network connectivity of IWSNs are embodied. Various network parameters are simulated in a noisy environment to obtain the optimal network coverage. The most appropriate industrial field for each algorithm is also described based on coverage properties. Our study aims to provide IWSNs designers with useful insights to choose an appropriate coverage strategy and achieve expected performance indicators in different industrial applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2015.2513767