Numerical Scheme for Singularly Perturbed Mixed Delay Differential Equation on Shishkin Type Meshes
Two non-uniform meshes used as part of the finite difference method to resolve singularly perturbed mixed-delay differential equations are studied in this article. The second-order derivative is multiplied by a small parameter which gives rise to boundary layers at x=0 and x=3 and strong interior la...
Uloženo v:
| Vydáno v: | Fractal and fractional Ročník 7; číslo 1; s. 43 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.01.2023
|
| Témata: | |
| ISSN: | 2504-3110, 2504-3110 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Two non-uniform meshes used as part of the finite difference method to resolve singularly perturbed mixed-delay differential equations are studied in this article. The second-order derivative is multiplied by a small parameter which gives rise to boundary layers at x=0 and x=3 and strong interior layers at x=1 and x=2 due to the delay terms. We prove that this method is almost first-order convergent on Shishkin mesh and is first-order convergent on Bakhvalov–Shishkin mesh. Error estimates are derived in the discrete maximum norm. Some examples are provided to validate the theoretical result. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2504-3110 2504-3110 |
| DOI: | 10.3390/fractalfract7010043 |