A fully polynomial-time approximation scheme for approximating a sum of random variables
Given n independent integer-valued random variables X1,X2,…,Xn and an integer C, we study the fundamental problem of computing the probability that the sum X=X1+X2+⋯+Xn is at most C. We assume that each random variable Xi is implicitly given by an oracle Oi, which given two input integers n1,n2 retu...
Uloženo v:
| Vydáno v: | Operations research letters Ročník 42; číslo 3; s. 197 - 202 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.05.2014
|
| Témata: | |
| ISSN: | 0167-6377, 1872-7468 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Given n independent integer-valued random variables X1,X2,…,Xn and an integer C, we study the fundamental problem of computing the probability that the sum X=X1+X2+⋯+Xn is at most C. We assume that each random variable Xi is implicitly given by an oracle Oi, which given two input integers n1,n2 returns the probability of n1≤Xi≤n2. We give the first deterministic fully polynomial-time approximation scheme (FPTAS) to estimate the probability up to a relative error of 1±ϵ. Our algorithm is based on the technique for approximately counting knapsack solutions, developed in Gopalan et al. (2011). |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0167-6377 1872-7468 |
| DOI: | 10.1016/j.orl.2014.02.004 |