Randomly censored partially linear single-index models
This paper proposes a method for estimation of a class of partially linear single-index models with randomly censored samples. The method provides a flexible way for modelling the association between a response and a set of predictor variables when the response variable is randomly censored. It pres...
Gespeichert in:
| Veröffentlicht in: | Journal of multivariate analysis Jg. 98; H. 10; S. 1895 - 1922 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
San Diego, CA
Elsevier Inc
01.11.2007
Elsevier Taylor & Francis LLC |
| Schriftenreihe: | Journal of Multivariate Analysis |
| Schlagworte: | |
| ISSN: | 0047-259X, 1095-7243 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper proposes a method for estimation of a class of partially linear single-index models with randomly censored samples. The method provides a flexible way for modelling the association between a response and a set of predictor variables when the response variable is randomly censored. It presents a technique for “dimension reduction” in semiparametric censored regression models and generalizes the existing accelerated failure-time models for survival analysis. The estimation procedure involves three stages: first, transform the censored data into synthetic data or pseudo-responses unbiasedly; second, obtain quasi-likelihood estimates of the regression coefficients in both linear and single-index components by an iteratively algorithm; finally, estimate the unknown nonparametric regression function using techniques for univariate censored nonparametric regression. The estimators for the regression coefficients are shown to be jointly root-
n consistent and asymptotically normal. In addition, the estimator for the unknown regression function is a local linear kernel regression estimator and can be estimated with the same efficiency as all the parameters are known. Monte Carlo simulations are conducted to illustrate the proposed methodology. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0047-259X 1095-7243 |
| DOI: | 10.1016/j.jmva.2006.11.008 |