Predicting the fire resistance of timber members loaded in tension

SUMMARY The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two‐step process implemented in the Abaqus finite element code: first, a time‐dependent thermal analysis of the member exposed to fire and then a structural analysis u...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fire and materials Ročník 37; číslo 2; s. 114 - 129
Hlavní autoři: Fragiacomo, Massimo, Menis, Agnese, Moss, Peter J., Clemente, Isaia, Buchanan, Andrew H., De Nicolo, Barbara
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 01.03.2013
Wiley
Wiley Subscription Services, Inc
Témata:
ISSN:0308-0501, 1099-1018
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract SUMMARY The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two‐step process implemented in the Abaqus finite element code: first, a time‐dependent thermal analysis of the member exposed to fire and then a structural analysis under a constant load are performed. The structural analysis considers the reduction in mechanical properties (modulus of elasticity and strength) of timber with temperature. The analysis terminates when the member can no longer redistribute stresses from the hottest to the coldest parts, leading to structural failure. The model was used to simulate fire tests carried out on specimens made from laminated veneer lumber loaded in tension. Experimental data in terms of temperature, charring depth, displacement and failure time were compared with the numerical results obtained by assuming the thermal properties and degradation of mechanical properties with temperature as suggested by Eurocode 5, showing an overall acceptable approximation. The fire resistance of the timber member was then predicted depending upon the applied tensile loads using the numerical model and analytical formulas. The proposed finite element model can be used to predict the fire resistance of timber structures as an alternative to expensive and complicated experimental tests. Copyright © 2012 John Wiley & Sons, Ltd.
AbstractList SUMMARY The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two‐step process implemented in the Abaqus finite element code: first, a time‐dependent thermal analysis of the member exposed to fire and then a structural analysis under a constant load are performed. The structural analysis considers the reduction in mechanical properties (modulus of elasticity and strength) of timber with temperature. The analysis terminates when the member can no longer redistribute stresses from the hottest to the coldest parts, leading to structural failure. The model was used to simulate fire tests carried out on specimens made from laminated veneer lumber loaded in tension. Experimental data in terms of temperature, charring depth, displacement and failure time were compared with the numerical results obtained by assuming the thermal properties and degradation of mechanical properties with temperature as suggested by Eurocode 5, showing an overall acceptable approximation. The fire resistance of the timber member was then predicted depending upon the applied tensile loads using the numerical model and analytical formulas. The proposed finite element model can be used to predict the fire resistance of timber structures as an alternative to expensive and complicated experimental tests. Copyright © 2012 John Wiley & Sons, Ltd.
SUMMARY The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two-step process implemented in the Abaqus finite element code: first, a time-dependent thermal analysis of the member exposed to fire and then a structural analysis under a constant load are performed. The structural analysis considers the reduction in mechanical properties (modulus of elasticity and strength) of timber with temperature. The analysis terminates when the member can no longer redistribute stresses from the hottest to the coldest parts, leading to structural failure. The model was used to simulate fire tests carried out on specimens made from laminated veneer lumber loaded in tension. Experimental data in terms of temperature, charring depth, displacement and failure time were compared with the numerical results obtained by assuming the thermal properties and degradation of mechanical properties with temperature as suggested by Eurocode 5, showing an overall acceptable approximation. The fire resistance of the timber member was then predicted depending upon the applied tensile loads using the numerical model and analytical formulas. The proposed finite element model can be used to predict the fire resistance of timber structures as an alternative to expensive and complicated experimental tests. Copyright © 2012 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
SUMMARY The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two-step process implemented in the Abaqus finite element code: first, a time-dependent thermal analysis of the member exposed to fire and then a structural analysis under a constant load are performed. The structural analysis considers the reduction in mechanical properties (modulus of elasticity and strength) of timber with temperature. The analysis terminates when the member can no longer redistribute stresses from the hottest to the coldest parts, leading to structural failure. The model was used to simulate fire tests carried out on specimens made from laminated veneer lumber loaded in tension. Experimental data in terms of temperature, charring depth, displacement and failure time were compared with the numerical results obtained by assuming the thermal properties and degradation of mechanical properties with temperature as suggested by Eurocode 5, showing an overall acceptable approximation. The fire resistance of the timber member was then predicted depending upon the applied tensile loads using the numerical model and analytical formulas. The proposed finite element model can be used to predict the fire resistance of timber structures as an alternative to expensive and complicated experimental tests. Copyright [copy 2012 John Wiley & Sons, Ltd.
The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two‐step process implemented in the Abaqus finite element code: first, a time‐dependent thermal analysis of the member exposed to fire and then a structural analysis under a constant load are performed. The structural analysis considers the reduction in mechanical properties (modulus of elasticity and strength) of timber with temperature. The analysis terminates when the member can no longer redistribute stresses from the hottest to the coldest parts, leading to structural failure. The model was used to simulate fire tests carried out on specimens made from laminated veneer lumber loaded in tension. Experimental data in terms of temperature, charring depth, displacement and failure time were compared with the numerical results obtained by assuming the thermal properties and degradation of mechanical properties with temperature as suggested by Eurocode 5, showing an overall acceptable approximation. The fire resistance of the timber member was then predicted depending upon the applied tensile loads using the numerical model and analytical formulas. The proposed finite element model can be used to predict the fire resistance of timber structures as an alternative to expensive and complicated experimental tests. Copyright © 2012 John Wiley & Sons, Ltd.
Author Buchanan, Andrew H.
De Nicolo, Barbara
Moss, Peter J.
Clemente, Isaia
Menis, Agnese
Fragiacomo, Massimo
Author_xml – sequence: 1
  givenname: Massimo
  surname: Fragiacomo
  fullname: Fragiacomo, Massimo
  organization: Department of Architecture, Design and Urban Planning, University of Sassari, Alghero, Italy
– sequence: 2
  givenname: Agnese
  surname: Menis
  fullname: Menis, Agnese
  email: Correspondence to: Agnese Menis, Department of Structural Engineering, University of Cagliari, Cagliari, Italy., ag.menis@gmail.com
  organization: Department of Structural Engineering, University of Cagliari, Cagliari, Italy
– sequence: 3
  givenname: Peter J.
  surname: Moss
  fullname: Moss, Peter J.
  organization: Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand
– sequence: 4
  givenname: Isaia
  surname: Clemente
  fullname: Clemente, Isaia
  organization: Department of Civil Engineering and Architecture, University of Trieste, Trieste, Italy
– sequence: 5
  givenname: Andrew H.
  surname: Buchanan
  fullname: Buchanan, Andrew H.
  organization: Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand
– sequence: 6
  givenname: Barbara
  surname: De Nicolo
  fullname: De Nicolo, Barbara
  organization: Department of Structural Engineering, University of Cagliari, Cagliari, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26885802$$DView record in Pascal Francis
BookMark eNqF0V1rFTEQBuAgFTytgj9hQQRv9nTysUn2sqfYKrZWUOllyG4mmrqbrUkO2n_vLqetKBav5ubJy2TefbIXp4iEPKewpgDs0NtxzShVj8iKQtvWFKjeIyvgoGtogD4h-zlfAYDWSq7I5kNCF_oS4peqfMXKh4RVwhxysbHHavJVCWOHqRpxGbkaJuvQVSFWBWMOU3xKHns7ZHx2Ow_I55PXn47f1GcXp2-Pj87qXjClage8450XyNqOAnqluWvBNtJCa63wStlWW-scc1y3GiQI56kWUlBJ-07zA_Jql3udpu9bzMWMIfc4DDbitM2GSkWFYrSl_6eCC5ivBAt98Re9mrYpzh8xlOlmDmV8US9vlc29HXyajxOyuU5htOnGMKl1o4HNbr1zfZpyTuhNH4ot85VKsmEwFMzSkplbMktLvze9f3CX-Q9a7-iPMODNg86cHJ3_6ecu8ee9t-mbkYqrxly-PzXs3aVU5x83ZsN_Adkcrqo
CODEN FMATDV
CitedBy_id crossref_primary_10_3390_buildings12122265
crossref_primary_10_1016_j_engstruct_2020_111608
crossref_primary_10_1016_j_jobe_2024_108781
crossref_primary_10_1016_j_engstruct_2025_120592
crossref_primary_10_1016_j_conbuildmat_2017_06_128
crossref_primary_10_1061__ASCE_ST_1943_541X_0000851
crossref_primary_10_1016_j_firesaf_2014_05_006
crossref_primary_10_1016_j_istruc_2020_12_086
crossref_primary_10_1016_j_conbuildmat_2020_121380
crossref_primary_10_1016_j_firesaf_2019_01_001
crossref_primary_10_1007_s10694_016_0578_2
crossref_primary_10_1016_j_firesaf_2017_11_008
crossref_primary_10_1016_j_firesaf_2018_02_001
crossref_primary_10_3390_buildings13030725
crossref_primary_10_3390_buildings14071898
crossref_primary_10_1016_j_indcrop_2022_115847
crossref_primary_10_2749_101686612X13363929517659
crossref_primary_10_1061__ASCE_ST_1943_541X_0000787
crossref_primary_10_1007_s10694_014_0421_6
crossref_primary_10_1016_j_jobe_2024_109808
crossref_primary_10_3390_app14041477
crossref_primary_10_1016_j_ijadhadh_2023_103358
Cites_doi 10.1260/2040‐2317.2.3.231
10.1002/fam.1078
10.1002/fam.898
10.1007/s10694‐009‐0092‐x
10.1002/fam.999
10.1002/fam.985
10.1016/j.buildenv.2008.02.010
10.1016/j.conbuildmat.2010.12.002
10.1002/fam.873
10.1002/fam.848
10.1002/fam.819
10.1260/2040‐2317.1.3.145
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
2014 INIST-CNRS
Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
IQODW
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/fam.2117
DatabaseName Istex
CrossRef
Pascal-Francis
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Health and Safety Science Abstracts (Full archive)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Health & Safety Science Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Materials Research Database
Health & Safety Science Abstracts
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1099-1018
EndPage 129
ExternalDocumentID 2886627611
26885802
10_1002_fam_2117
FAM2117
ark_67375_WNG_2KW67MSB_B
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQZ
WTY
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~V8
~WT
AAYXX
BANNL
CITATION
O8X
IQODW
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4277-d03b3bf4e29b10ef783d90a56a09aa4f77a98aadd2d38980604df18464161cb83
IEDL.DBID DRFUL
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314938900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0308-0501
IngestDate Sun Nov 23 09:45:01 EST 2025
Tue Oct 07 09:22:48 EDT 2025
Fri Jul 25 10:43:10 EDT 2025
Mon Jul 21 09:16:16 EDT 2025
Sat Nov 29 02:17:52 EST 2025
Tue Nov 18 22:08:15 EST 2025
Thu Sep 25 07:33:46 EDT 2025
Sun Sep 21 06:19:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Wood
Construction materials
Combustion
Wood construction
Experimental study
Forecast model
Modeling
Building functional element
Finite element method
Fire resistance
experimental testing
Abaqus
finite element model
Fire test
charring
Numerical simulation
Thermal analysis
timber
thermal-structural analysis
Comparative study
Structural analysis
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4277-d03b3bf4e29b10ef783d90a56a09aa4f77a98aadd2d38980604df18464161cb83
Notes ark:/67375/WNG-2KW67MSB-B
istex:03C239EB77942C0A7FA684A2B1F996DA4914482A
ArticleID:FAM2117
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
PQID 1285167231
PQPubID 866405
PageCount 16
ParticipantIDs proquest_miscellaneous_1671472191
proquest_miscellaneous_1434021101
proquest_journals_1285167231
pascalfrancis_primary_26885802
crossref_citationtrail_10_1002_fam_2117
crossref_primary_10_1002_fam_2117
wiley_primary_10_1002_fam_2117_FAM2117
istex_primary_ark_67375_WNG_2KW67MSB_B
PublicationCentury 2000
PublicationDate March 2013
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: March 2013
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
– name: Bognor Regis
PublicationTitle Fire and materials
PublicationTitleAlternate Fire Mater
PublicationYear 2013
Publisher John Wiley & Sons, Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Frangi A, Fontana M. Charring rates and temperature profiles of wood sections. Fire and Materials 2003; 27(2):91-102. DOI: 10.1002/fam.819
Yang T-H, Wang S-Y, Tsai M-J, Lin C-Y. The charring depth and charring rate of glued laminated timber after a standard fire exposure test. Building and Environment 2009; 44(2):231-236. DOI: 10.1016/j.buildenv.2008.02.010
Buchanan AH. Structural design for fire safety. Wiley: Chichester, U.K., 2002.
Frangi A, König J. Effect of increased charring on the narrow side of rectangular timber cross-sections exposed to fire on three or four sides. Fire and Materials 2011. DOI: 10.1002/fam.1078
Fragiacomo M, Menis A, Moss PJ, Buchanan AH, Clemente I. Numerical and experimental evaluation of the temperature distribution within laminated veneer lumber (LVL) exposed to fire. Journal of Structural Fire Engineering 2010; 1(3):145-159. DOI: 10.1260/2040-2317.1.3.145
Janssens ML. Modeling of the thermal degradation of structural wood members exposed to fire. Fire and Materials 2004; 28(2-4):199-207. DOI: 10.1002/fam.848
ISO 834-1. Fire-resistance tests. Elements of building construction. - Part 1: General requirements. International Organization for Standardization: Geneva, Switzerland, 1999.
Cachim PB, Franssen J-M. Comparison between the charring rate model and the conductive model of Eurocode 5. Fire and Materials 2009; 33(3):129-143. DOI: 10.1002/fam.985
Cachim PB, Franssen J-M. Assessment of Eurocode 5 charring rate calculation methods. Fire Technology 2010; 46(1):169-181. DOI: 10.1007/s10694-009-0092-x
König J. Effective thermal actions and thermal properties of timber members in natural fires. Fire and Materials 2006; 30(1):51-63. DOI: 10.1002/fam.898
O'Neill J, Carradine D, Moss PJ, Fragiacomo M, Dhakal R, Buchanan AH. Design of timber-concrete composite floors for fire resistance. Journal of Structural Fire Engineering 2011; 2(3):231-242. DOI: 10.1260/2040-2317.2.3.231
König J. Structural fire design according to Eurocode 5-design rules and their background. Fire and Materials 2005; 29(3):147-163. DOI: 10.1002/fam.873
Hopkin DJ, El-Rimawi J, Silberschmidt V, Lennon T. An effective thermal property framework for softwood in parametric design fire: comparison of the Eurocode 5 parametric charring approach and advanced calculation models. Construction and Building Materials 2011; 25(5):2584-2595. DOI: 10.1016/j.conbuildmat.2010.12.002
SNZ. 1993. Code of practice for timber design. NZS 3603:1993. Standards New Zealand: Wellington, New Zealand, 1993.
Moss PJ, Buchanan AH, Fragiacomo M, Lau PH, Chuo T. Fire performance of bolted connections in laminated veneer lumber. Fire and Materials 2009; 33(5):223-243. DOI: 10.1002/fam.999
2009; 33
2009; 44
2006; 30
2010; 1
2011; 2
2010; 46
2001
2011
2010
2004; 28
2009
2008
2003; 27
2006
2005
2004
1993
2003
2002
2011; 25
2005; 29
1999
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
ISO 834‐1 (e_1_2_9_21_1) 1999
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_2_1
Buchanan AH (e_1_2_9_4_1) 2002
e_1_2_9_9_1
e_1_2_9_26_1
SNZ (e_1_2_9_10_1) 1993
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – reference: Frangi A, König J. Effect of increased charring on the narrow side of rectangular timber cross-sections exposed to fire on three or four sides. Fire and Materials 2011. DOI: 10.1002/fam.1078
– reference: Fragiacomo M, Menis A, Moss PJ, Buchanan AH, Clemente I. Numerical and experimental evaluation of the temperature distribution within laminated veneer lumber (LVL) exposed to fire. Journal of Structural Fire Engineering 2010; 1(3):145-159. DOI: 10.1260/2040-2317.1.3.145
– reference: König J. Structural fire design according to Eurocode 5-design rules and their background. Fire and Materials 2005; 29(3):147-163. DOI: 10.1002/fam.873
– reference: Frangi A, Fontana M. Charring rates and temperature profiles of wood sections. Fire and Materials 2003; 27(2):91-102. DOI: 10.1002/fam.819
– reference: ISO 834-1. Fire-resistance tests. Elements of building construction. - Part 1: General requirements. International Organization for Standardization: Geneva, Switzerland, 1999.
– reference: Janssens ML. Modeling of the thermal degradation of structural wood members exposed to fire. Fire and Materials 2004; 28(2-4):199-207. DOI: 10.1002/fam.848
– reference: SNZ. 1993. Code of practice for timber design. NZS 3603:1993. Standards New Zealand: Wellington, New Zealand, 1993.
– reference: Cachim PB, Franssen J-M. Assessment of Eurocode 5 charring rate calculation methods. Fire Technology 2010; 46(1):169-181. DOI: 10.1007/s10694-009-0092-x
– reference: Cachim PB, Franssen J-M. Comparison between the charring rate model and the conductive model of Eurocode 5. Fire and Materials 2009; 33(3):129-143. DOI: 10.1002/fam.985
– reference: König J. Effective thermal actions and thermal properties of timber members in natural fires. Fire and Materials 2006; 30(1):51-63. DOI: 10.1002/fam.898
– reference: Moss PJ, Buchanan AH, Fragiacomo M, Lau PH, Chuo T. Fire performance of bolted connections in laminated veneer lumber. Fire and Materials 2009; 33(5):223-243. DOI: 10.1002/fam.999
– reference: O'Neill J, Carradine D, Moss PJ, Fragiacomo M, Dhakal R, Buchanan AH. Design of timber-concrete composite floors for fire resistance. Journal of Structural Fire Engineering 2011; 2(3):231-242. DOI: 10.1260/2040-2317.2.3.231
– reference: Hopkin DJ, El-Rimawi J, Silberschmidt V, Lennon T. An effective thermal property framework for softwood in parametric design fire: comparison of the Eurocode 5 parametric charring approach and advanced calculation models. Construction and Building Materials 2011; 25(5):2584-2595. DOI: 10.1016/j.conbuildmat.2010.12.002
– reference: Yang T-H, Wang S-Y, Tsai M-J, Lin C-Y. The charring depth and charring rate of glued laminated timber after a standard fire exposure test. Building and Environment 2009; 44(2):231-236. DOI: 10.1016/j.buildenv.2008.02.010
– reference: Buchanan AH. Structural design for fire safety. Wiley: Chichester, U.K., 2002.
– volume: 44
  start-page: 231
  issue: 2
  year: 2009
  end-page: 236
  article-title: The charring depth and charring rate of glued laminated timber after a standard fire exposure test
  publication-title: Building and Environment
– year: 2009
– year: 2011
  article-title: Effect of increased charring on the narrow side of rectangular timber cross‐sections exposed to fire on three or four sides
  publication-title: Fire and Materials
– volume: 30
  start-page: 51
  issue: 1
  year: 2006
  end-page: 63
  article-title: Effective thermal actions and thermal properties of timber members in natural fires
  publication-title: Fire and Materials
– year: 2005
– year: 2002
– volume: 33
  start-page: 223
  issue: 5
  year: 2009
  end-page: 243
  article-title: Fire performance of bolted connections in laminated veneer lumber
  publication-title: Fire and Materials
– year: 2001
– year: 2008
– year: 2006
– year: 2004
– year: 2003
– volume: 28
  start-page: 199
  issue: 2–4
  year: 2004
  end-page: 207
  article-title: Modeling of the thermal degradation of structural wood members exposed to fire
  publication-title: Fire and Materials
– volume: 29
  start-page: 147
  issue: 3
  year: 2005
  end-page: 163
  article-title: Structural fire design according to Eurocode 5—design rules and their background
  publication-title: Fire and Materials
– volume: 27
  start-page: 91
  issue: 2
  year: 2003
  end-page: 102
  article-title: Charring rates and temperature profiles of wood sections
  publication-title: Fire and Materials
– volume: 25
  start-page: 2584
  issue: 5
  year: 2011
  end-page: 2595
  article-title: An effective thermal property framework for softwood in parametric design fire: comparison of the Eurocode 5 parametric charring approach and advanced calculation models
  publication-title: Construction and Building Materials
– volume: 2
  start-page: 231
  issue: 3
  year: 2011
  end-page: 242
  article-title: Design of timber–concrete composite floors for fire resistance
  publication-title: Journal of Structural Fire Engineering
– year: 1993
– volume: 1
  start-page: 145
  issue: 3
  year: 2010
  end-page: 159
  article-title: Numerical and experimental evaluation of the temperature distribution within laminated veneer lumber (LVL) exposed to fire
  publication-title: Journal of Structural Fire Engineering
– volume: 33
  start-page: 129
  issue: 3
  year: 2009
  end-page: 143
  article-title: Comparison between the charring rate model and the conductive model of Eurocode 5
  publication-title: Fire and Materials
– start-page: 223
  year: 2002
  end-page: 242
– year: 2010
– year: 1999
– volume: 46
  start-page: 169
  issue: 1
  year: 2010
  end-page: 181
  article-title: Assessment of Eurocode 5 charring rate calculation methods
  publication-title: Fire Technology
– volume-title: Structural design for fire safety
  year: 2002
  ident: e_1_2_9_4_1
– ident: e_1_2_9_29_1
  doi: 10.1260/2040‐2317.2.3.231
– ident: e_1_2_9_14_1
– ident: e_1_2_9_33_1
  doi: 10.1002/fam.1078
– ident: e_1_2_9_28_1
– ident: e_1_2_9_3_1
– ident: e_1_2_9_6_1
– ident: e_1_2_9_25_1
– ident: e_1_2_9_7_1
  doi: 10.1002/fam.898
– ident: e_1_2_9_20_1
– ident: e_1_2_9_16_1
– ident: e_1_2_9_19_1
– ident: e_1_2_9_34_1
  doi: 10.1007/s10694‐009‐0092‐x
– ident: e_1_2_9_13_1
– ident: e_1_2_9_17_1
  doi: 10.1002/fam.999
– ident: e_1_2_9_32_1
– volume-title: Code of practice for timber design. NZS 3603:1993
  year: 1993
  ident: e_1_2_9_10_1
– ident: e_1_2_9_2_1
– ident: e_1_2_9_8_1
  doi: 10.1002/fam.985
– ident: e_1_2_9_5_1
– ident: e_1_2_9_27_1
– ident: e_1_2_9_31_1
  doi: 10.1016/j.buildenv.2008.02.010
– ident: e_1_2_9_9_1
  doi: 10.1016/j.conbuildmat.2010.12.002
– ident: e_1_2_9_35_1
  doi: 10.1002/fam.873
– ident: e_1_2_9_12_1
  doi: 10.1002/fam.848
– ident: e_1_2_9_11_1
  doi: 10.1002/fam.819
– ident: e_1_2_9_24_1
  doi: 10.1260/2040‐2317.1.3.145
– ident: e_1_2_9_30_1
– ident: e_1_2_9_15_1
– volume-title: Fire‐resistance tests. Elements of building construction. ‐ Part 1: General requirements
  year: 1999
  ident: e_1_2_9_21_1
– ident: e_1_2_9_18_1
– ident: e_1_2_9_22_1
– ident: e_1_2_9_23_1
– ident: e_1_2_9_26_1
SSID ssj0008876
Score 2.088202
Snippet SUMMARY The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two‐step process...
The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two‐step process implemented in...
SUMMARY The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two-step process...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114
SubjectTerms Abaqus
Applied sciences
Building codes
Building insulation
Building structure
Buildings
Buildings. Public works
charring
Computation methods. Tables. Charts
Computer simulation
Construction (buildings and works)
Exact sciences and technology
experimental testing
External envelopes
Finite element method
finite element model
Fire resistance
Fires
Lumber
Materials
Mathematical analysis
Mathematical models
Mechanical properties
Sound insulation
Structural analysis
Structural analysis. Stresses
Thermal analysis
Thermal properties
thermal-structural analysis
Timber
Wood
Wood structure
Title Predicting the fire resistance of timber members loaded in tension
URI https://api.istex.fr/ark:/67375/WNG-2KW67MSB-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffam.2117
https://www.proquest.com/docview/1285167231
https://www.proquest.com/docview/1434021101
https://www.proquest.com/docview/1671472191
Volume 37
WOSCitedRecordID wos000314938900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1018
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008876
  issn: 0308-0501
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVglwM98I260FZGQuUUmthObB-70AUJuqqAqr1ZdmxLK9qk2mwrfj4zSTZ0JUBInHzIWHLGM_abzOQNIa-D0L60zCfOBZkIbctECasSjwUBXjBhy67ZhJzP1fm5PumrKvFfmI4fYvjghp7Rntfo4NY1B79IQ6O9fAvRi7xLxgzMNh-R8fsvs9PPwzkM7tNlKjHBn6fZmno2ZQfruRuX0Rj1-gOLI20D-oldY4sN5Hkbv7YX0Ozh_yz9EXnQw0562NnJY3InVE_I1i0ywqdkerLEpA2WQVNAhTTCYUghGEeACZZB60hXC2wfQi8DDg29qK0Pni4q2pbB19Uzcjo7-vbuY9J3WEhKgblbn3LHXRSBaZelIUrFvU5tXthUWyuilFYrC0cg8wBsFBLt-AgxYYFhUekUf05GVV2FbUK901x7HrkITsSMO8AGgVumQxmED-mEvFmr2pQ9_Th2wbgwHXEyM6AVg1qZkFeD5FVHufEbmf12twYBu_yOJWoyN2fzD4Z9Oivk8depmU7I3sZ2DhNYoVSuUjYhO-v9Nb37NgYu7TwrJGBfWMzwGBwPsym2CvU1yAgOsTegp7_JFDITEGNrkNlvLeKPb2Rmh8c4vvhXwZfkPmtbc2A93A4ZrZbXYZfcK29Wi2a51zvDTxL4DHQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGigQ88I1WGMNIaDxlS2wntsXTCpShtdUEm7Y3y4ltqWJLprZD_Pnc5YtVAoTEUx5ylpzznf073-V3hLzxQrvCMhfluZeR0LaIlLAqclgQ4AQTtmiaTcjZTJ2f6-MN8q77F6bhh-gv3NAz6v0aHRwvpPd_sYYGe7kH4Yu8RQYCrAjMe_Dhy_h00m_E4D9NqhIz_GmcdNyzMdvvxq6dRgNU7A-sjrRLUFBoOlusQc-bALY-gcYP_mvuD8n9FnjSg8ZSHpENXz4m927QET4ho-MFpm2wEJoCLqQBtkMK4ThCTLANWgW6mmMDEXrp8bGkF5V13tF5SetC-Kp8Sk7HH0_eH0Ztj4WoEJi9dTHPeR6EZzpPYh-k4k7HNs1srK0VQUqrlYVNkDmANgqpdlyAqDDDwKjIFX9GNsuq9FuEulxz7XjgwuciJDwHdOC5ZdoXXjgfD8nbTtemaAnIsQ_GhWmok5kBrRjUypC87iWvGtKN38js1svVC9jFNyxSk6k5m30y7Ogsk9OvIzMakp219ewHsEypVMVsSLa7BTatAy8NHNtpkklAvzCZ_jW4HuZTbOmra5ARHKJvwE9_k8lkIiDK1iCzW5vEH7_IjA-m-Hz-r4KvyJ3Dk-nETD7Pjl6Qu6xu1IHVcdtkc7W49i_J7eL7ar5c7LSe8RMdzRBk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdGixB74ButMIaR0HjKlthubIunlRFA26oKmLY3y4ltqWJLprZD_Pnc5YtVAoTEkx9ylpyz7_y73OV3hLz2QrvCMhfluZeR0LaIlLAqclgQ4AQTtmiaTcjpVJ2f69kGedv9C9PwQ_Qf3NAyan-NBu6vXNj_xRoa7OUehC_yFhkK7CEzIMPDz9npce-IwX6aVCVm-Mdx0nHPxmy_m7t2Gw1RsT-wOtIuQUGh6WyxBj1vAtj6Bsru_9faH5B7LfCkB81JeUg2fPmIbN6gI3xMJrMFpm2wEJoCLqQB3CGFcBwhJpwNWgW6mmMDEXrpcVjSi8o67-i8pHUhfFU-IafZ-6_vPkZtj4WoEJi9dTHPeR6EZzpPYh-k4k7HdpzaWFsrgpRWKwtOkDmANgqpdlyAqDDFwKjIFX9KBmVV-i1CXa65djxw4XMREp4DOvDcMu0LL5yPR-RNp2tTtATk2AfjwjTUycyAVgxqZURe9ZJXDenGb2R26-3qBeziGxapybE5m34w7OgslSdfJmYyIjtr-9lPYKlSYxWzEdnuNti0Brw0cG2Pk1QC-oXF9I_B9DCfYktfXYOM4BB9A376m0wqEwFRtgaZ3fpI_PGNTHZwguOzfxV8Se7MDjNz_Gl69JzcZXWfDiyO2yaD1eLavyC3i--r-XKx0xrGT5HmD98
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+fire+resistance+of+timber+members+loaded+in+tension&rft.jtitle=Fire+and+materials&rft.au=Fragiacomo%2C+Massimo&rft.au=Menis%2C+Agnese&rft.au=Moss%2C+Peter+J.&rft.au=Clemente%2C+Isaia&rft.date=2013-03-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0308-0501&rft.eissn=1099-1018&rft.volume=37&rft.issue=2&rft.spage=114&rft.epage=129&rft_id=info:doi/10.1002%2Ffam.2117&rft.externalDBID=10.1002%252Ffam.2117&rft.externalDocID=FAM2117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-0501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-0501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-0501&client=summon