Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms

In this paper, we consider the problem of feature selection for linear SVMs on uncertain data that is inherently prevalent in almost all datasets. Using principles of Robust Optimization, we propose robust schemes to handle data with ellipsoidal model and box model of uncertainty. The difficulty in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural networks Ročník 59; s. 36 - 50
Hlavní autoři: Le Thi, Hoai An, Vo, Xuan Thanh, Pham Dinh, Tao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.11.2014
Elsevier
Témata:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider the problem of feature selection for linear SVMs on uncertain data that is inherently prevalent in almost all datasets. Using principles of Robust Optimization, we propose robust schemes to handle data with ellipsoidal model and box model of uncertainty. The difficulty in treating ℓ0-norm in feature selection problem is overcome by using appropriate approximations and Difference of Convex functions (DC) programming and DC Algorithms (DCA). The computational results show that the proposed robust optimization approaches are superior than a traditional approach in immunizing perturbation of the data.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-6080
1879-2782
1879-2782
DOI:10.1016/j.neunet.2014.06.011