Group-Linear Empirical Bayes Estimates for a Heteroscedastic Normal Mean

The problem of estimating the mean of a normal vector with known but unequal variances introduces substantial difficulties that impair the adequacy of traditional empirical Bayes estimators. By taking a different approach that treats the known variances as part of the random observations, we restore...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association Vol. 113; no. 522; pp. 698 - 710
Main Authors: Weinstein, Asaf, Ma, Zhuang, Brown, Lawrence D., Zhang, Cun-Hui
Format: Journal Article
Language:English
Published: Alexandria Taylor & Francis 03.04.2018
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Subjects:
ISSN:0162-1459, 1537-274X, 1537-274X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of estimating the mean of a normal vector with known but unequal variances introduces substantial difficulties that impair the adequacy of traditional empirical Bayes estimators. By taking a different approach that treats the known variances as part of the random observations, we restore symmetry and thus the effectiveness of such methods. We suggest a group-linear empirical Bayes estimator, which collects observations with similar variances and applies a spherically symmetric estimator to each group separately. The proposed estimator is motivated by a new oracle rule which is stronger than the best linear rule, and thus provides a more ambitious benchmark than that considered in the previous literature. Our estimator asymptotically achieves the new oracle risk (under appropriate conditions) and at the same time is minimax. The group-linear estimator is particularly advantageous in situations where the true means and observed variances are empirically dependent. To demonstrate the merits of the proposed methods in real applications, we analyze the baseball data used by Brown ( 2008 ), where the group-linear methods achieved the prediction error of the best nonparametric estimates that have been applied to the dataset, and significantly lower error than other parametric and semiparametric empirical Bayes estimators.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-1459
1537-274X
1537-274X
DOI:10.1080/01621459.2017.1280406