Forest Insects and Climate Change
Purpose of Review Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this subject including previous reviews on the topic. We provide a comprehensive discussion of the subject, with special attention to insect range ex...
Gespeichert in:
| Veröffentlicht in: | Current forestry reports Jg. 4; H. 2; S. 35 - 50 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.06.2018
Springer Nature B.V Springer |
| Schlagworte: | |
| ISSN: | 2198-6436, 2198-6436 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Purpose of Review
Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this subject including previous reviews on the topic. We provide a comprehensive discussion of the subject, with special attention to insect range expansion, insect abundance, impacts on forest ecosystems, and effects on forest insect communities. We considered forest insects according to their major guilds and biomes.
Recent Findings
Effects of climate change on forest insects are demonstrated for a number of species and guilds, although generalizations of results available so far are difficult because of species-specific responses to climate change. In addition, disentangling direct and indirect effects of climate change is complex due to the large number of variables affected. Modeling based on climate projections is useful when combined with mechanistic explanations.
Summary
Expansion of either the true range or the outbreak range is observed in several model species/groups of major insect guilds in boreal and temperate biomes. Mechanistic explanations are provided for a few species and are mainly based on increase in winter temperatures. In relation to insect abundance, climate change can either promote outbreaks or disrupt trophic interactions and decrease the severity of outbreaks. There is good evidence that some recent outbreaks of bark beetles and defoliating insects are influenced by climate change and are having a large impact on ecosystems as well as on communities of forest insects. |
|---|---|
| AbstractList | Purpose of ReviewClimate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this subject including previous reviews on the topic. We provide a comprehensive discussion of the subject, with special attention to insect range expansion, insect abundance, impacts on forest ecosystems, and effects on forest insect communities. We considered forest insects according to their major guilds and biomes.Recent FindingsEffects of climate change on forest insects are demonstrated for a number of species and guilds, although generalizations of results available so far are difficult because of species-specific responses to climate change. In addition, disentangling direct and indirect effects of climate change is complex due to the large number of variables affected. Modeling based on climate projections is useful when combined with mechanistic explanations.SummaryExpansion of either the true range or the outbreak range is observed in several model species/groups of major insect guilds in boreal and temperate biomes. Mechanistic explanations are provided for a few species and are mainly based on increase in winter temperatures. In relation to insect abundance, climate change can either promote outbreaks or disrupt trophic interactions and decrease the severity of outbreaks. There is good evidence that some recent outbreaks of bark beetles and defoliating insects are influenced by climate change and are having a large impact on ecosystems as well as on communities of forest insects. Purpose of Review Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this subject including previous reviews on the topic. We provide a comprehensive discussion of the subject, with special attention to insect range expansion, insect abundance, impacts on forest ecosystems, and effects on forest insect communities. We considered forest insects according to their major guilds and biomes. Recent Findings Effects of climate change on forest insects are demonstrated for a number of species and guilds, although generalizations of results available so far are difficult because of species-specific responses to climate change. In addition, disentangling direct and indirect effects of climate change is complex due to the large number of variables affected. Modeling based on climate projections is useful when combined with mechanistic explanations. Summary Expansion of either the true range or the outbreak range is observed in several model species/groups of major insect guilds in boreal and temperate biomes. Mechanistic explanations are provided for a few species and are mainly based on increase in winter temperatures. In relation to insect abundance, climate change can either promote outbreaks or disrupt trophic interactions and decrease the severity of outbreaks. There is good evidence that some recent outbreaks of bark beetles and defoliating insects are influenced by climate change and are having a large impact on ecosystems as well as on communities of forest insects. Purpose of Review Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013-2017) on this subject including previous reviews on the topic. We provide a comprehensive discussion of the subject, with special attention to insect range expansion, insect abundance, impacts on forest ecosystems, and effects on forest insect communities. We considered forest insects according to their major guilds and biomes. Recent Findings Effects of climate change on forest insects are demonstrated for a number of species and guilds, although generalizations of results available so far are difficult because of species-specific responses to climate change. In addition, disentangling direct and indirect effects of climate change is complex due to the large number of variables affected. Modeling based on climate projections is useful when combined with mechanistic explanations. Summary Expansion of either the true range or the outbreak range is observed in several model species/groups of major insect guilds in boreal and temperate biomes. Mechanistic explanations are provided for a few species and are mainly based on increase in winter temperatures. In relation to insect abundance, climate change can either promote outbreaks or disrupt trophic interactions and decrease the severity of outbreaks. There is good evidence that some recent outbreaks of bark beetles and defoliating insects are influenced by climate change and are having a large impact on ecosystems as well as on communities of forest insects. PURPOSE OF REVIEW: Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this subject including previous reviews on the topic. We provide a comprehensive discussion of the subject, with special attention to insect range expansion, insect abundance, impacts on forest ecosystems, and effects on forest insect communities. We considered forest insects according to their major guilds and biomes. RECENT FINDINGS: Effects of climate change on forest insects are demonstrated for a number of species and guilds, although generalizations of results available so far are difficult because of species-specific responses to climate change. In addition, disentangling direct and indirect effects of climate change is complex due to the large number of variables affected. Modeling based on climate projections is useful when combined with mechanistic explanations. Expansion of either the true range or the outbreak range is observed in several model species/groups of major insect guilds in boreal and temperate biomes. Mechanistic explanations are provided for a few species and are mainly based on increase in winter temperatures. In relation to insect abundance, climate change can either promote outbreaks or disrupt trophic interactions and decrease the severity of outbreaks. There is good evidence that some recent outbreaks of bark beetles and defoliating insects are influenced by climate change and are having a large impact on ecosystems as well as on communities of forest insects. |
| Author | Roques, Alain Battisti, Andrea Pureswaran, Deepa S. |
| Author_xml | – sequence: 1 givenname: Deepa S. surname: Pureswaran fullname: Pureswaran, Deepa S. email: deepa.pureswaran@canada.ca organization: Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre – sequence: 2 givenname: Alain surname: Roques fullname: Roques, Alain organization: Institut National de la Recherche Agronomique (INRA), UR 0633, Zoologie Forestière – sequence: 3 givenname: Andrea surname: Battisti fullname: Battisti, Andrea organization: Department of Agronomy, Food, Natural resources Animals and Environment (DAFNAE), University of Padova |
| BackLink | https://hal.inrae.fr/hal-02629304$$DView record in HAL |
| BookMark | eNp9kE1LAzEURYNUsNb-AHcVN7oYffmYpFmWwdpCwY2uQ5omdso0qclU8N-bMopS0FU-OPdx3zlHPR-8RegSwx0GEPeJgSBlAXhc5GdZ8BPUJ1iOC84o7_26n6FhShsAIAIDoayPrqYh2tSO5j5Z06aR9qtR1dRb3dpRtdb-1V6gU6ebZIdf5wC9TB-eq1mxeHqcV5NFYRjhbSGFxKulFiUn2MjSSUyMAOs0ZksojaRGOCMNSHCcWyucNUJb6shKY8EIpQN0281d60btYq4QP1TQtZpNFurwB4QTSYG948zedOwuhrd97q-2dTK2abS3YZ8UgTGDEjMJGb0-QjdhH33eJFNUSgYYykyJjjIxpBStU6ZudVsH30ZdNwqDOphWnWmVTauDacVzEh8lv7v_lyFdJmU2K44_nf4OfQKni434 |
| CitedBy_id | crossref_primary_10_3390_microorganisms10112228 crossref_primary_10_1093_ee_nvac091 crossref_primary_10_1111_een_13053 crossref_primary_10_1016_j_foreco_2021_119048 crossref_primary_10_1002_ece3_9525 crossref_primary_10_1111_ddi_13814 crossref_primary_10_1016_j_foreco_2021_119953 crossref_primary_10_1016_j_heliyon_2023_e23142 crossref_primary_10_5091_plecevo_96572 crossref_primary_10_1016_j_agrformet_2022_109023 crossref_primary_10_1093_treephys_tpz029 crossref_primary_10_1007_s10980_021_01382_9 crossref_primary_10_1139_as_2021_0027 crossref_primary_10_1007_s00436_024_08180_7 crossref_primary_10_3390_d13030110 crossref_primary_10_1016_j_foreco_2019_117495 crossref_primary_10_1111_brv_12571 crossref_primary_10_1016_j_fecs_2025_100367 crossref_primary_10_3389_fclim_2023_1158386 crossref_primary_10_1016_j_agrformet_2023_109548 crossref_primary_10_1111_1365_2656_70104 crossref_primary_10_3390_f11020175 crossref_primary_10_1002_fee_2160 crossref_primary_10_1007_s00344_024_11548_9 crossref_primary_10_1038_s42003_023_04690_9 crossref_primary_10_1111_ppa_70041 crossref_primary_10_1016_j_scitotenv_2024_170117 crossref_primary_10_3390_rs16081365 crossref_primary_10_1007_s40725_022_00170_1 crossref_primary_10_1371_journal_pone_0250507 crossref_primary_10_1002_fee_2829 crossref_primary_10_1080_10106049_2020_1849413 crossref_primary_10_1134_S1062359024613338 crossref_primary_10_1111_afe_12470 crossref_primary_10_1111_afe_12591 crossref_primary_10_1016_j_foreco_2022_120400 crossref_primary_10_1139_cjfr_2024_0303 crossref_primary_10_1016_j_ecolind_2025_113488 crossref_primary_10_1080_11956860_2019_1666549 crossref_primary_10_3398_064_082_0311 crossref_primary_10_1016_j_scitotenv_2021_148853 crossref_primary_10_1146_annurev_ecolsys_110421_102101 crossref_primary_10_1038_s41467_023_39092_2 crossref_primary_10_1016_j_cois_2023_101020 crossref_primary_10_1111_gcb_14893 crossref_primary_10_1007_s10980_023_01678_y crossref_primary_10_1016_j_scitotenv_2024_173847 crossref_primary_10_1016_j_foreco_2024_122133 crossref_primary_10_1371_journal_pone_0288067 crossref_primary_10_3832_ifor3960_015 crossref_primary_10_1016_j_foreco_2020_118270 crossref_primary_10_14411_eje_2022_028 crossref_primary_10_1038_s41598_025_97239_1 crossref_primary_10_3389_fevo_2025_1532974 crossref_primary_10_1080_00218839_2021_1999684 crossref_primary_10_1007_s10340_025_01955_6 crossref_primary_10_1016_j_fecs_2022_100056 crossref_primary_10_1016_j_fecs_2024_100177 crossref_primary_10_1007_s00285_022_01800_9 crossref_primary_10_3390_f15081458 crossref_primary_10_1080_03949370_2022_2157892 crossref_primary_10_1007_s10342_022_01468_2 crossref_primary_10_1093_jee_toz235 crossref_primary_10_1016_j_scitotenv_2024_172329 crossref_primary_10_1016_j_chaos_2024_115949 crossref_primary_10_1080_26395916_2021_1957021 crossref_primary_10_1016_j_cois_2020_06_003 crossref_primary_10_1093_jisesa_ieae089 crossref_primary_10_3390_insects12040369 crossref_primary_10_1139_cjfr_2022_0022 crossref_primary_10_1093_jee_toaf006 crossref_primary_10_1016_j_ecolind_2020_107120 crossref_primary_10_1155_2024_5998962 crossref_primary_10_1111_jbi_15151 crossref_primary_10_1080_02827581_2020_1808055 crossref_primary_10_3389_fmicb_2019_01238 crossref_primary_10_1111_eea_13488 crossref_primary_10_1038_s41598_022_22582_6 crossref_primary_10_3390_insects15030200 crossref_primary_10_1016_j_foreco_2021_119422 crossref_primary_10_1111_pce_14176 crossref_primary_10_1016_j_scs_2020_102656 crossref_primary_10_1038_s41467_021_21399_7 crossref_primary_10_3390_f15040602 crossref_primary_10_1111_pce_15383 crossref_primary_10_1016_j_foreco_2022_120041 crossref_primary_10_1002_fee_2190 crossref_primary_10_3390_f10010012 crossref_primary_10_3390_f15111968 crossref_primary_10_1007_s11273_022_09903_2 crossref_primary_10_1111_een_13142 crossref_primary_10_1038_s41467_021_26666_1 crossref_primary_10_1111_1744_7917_13358 crossref_primary_10_1073_pnas_2407057121 crossref_primary_10_1016_j_foreco_2025_123081 crossref_primary_10_3390_f14091730 crossref_primary_10_3390_insects13010079 crossref_primary_10_1016_j_foreco_2022_120399 crossref_primary_10_1038_s41467_025_56699_9 crossref_primary_10_3390_su14031914 crossref_primary_10_1007_s10342_023_01623_3 crossref_primary_10_1111_1748_5967_12763 crossref_primary_10_1038_s41598_025_98159_w crossref_primary_10_1111_afe_12411 crossref_primary_10_3390_plants14070996 crossref_primary_10_1007_s00468_020_01971_2 crossref_primary_10_3390_s19183965 crossref_primary_10_1016_j_plaphe_2025_100057 crossref_primary_10_1111_mec_16160 crossref_primary_10_3389_fevo_2023_1293311 crossref_primary_10_1016_j_jenvman_2025_126710 crossref_primary_10_1093_jofore_fvac019 crossref_primary_10_3389_ffgc_2021_725066 crossref_primary_10_1016_j_ancene_2024_100432 crossref_primary_10_5194_bg_18_5053_2021 crossref_primary_10_1016_j_baae_2021_06_004 crossref_primary_10_3390_f16040655 crossref_primary_10_1016_j_foreco_2024_122106 crossref_primary_10_1016_j_isprsjprs_2024_07_027 crossref_primary_10_1016_j_scitotenv_2022_153041 crossref_primary_10_1016_j_foreco_2025_122968 crossref_primary_10_1093_jee_toad023 crossref_primary_10_1016_j_foreco_2018_10_040 crossref_primary_10_3389_ffgc_2023_1278409 crossref_primary_10_3390_atmos12050612 crossref_primary_10_1007_s10340_024_01765_2 crossref_primary_10_1002_ecm_70026 crossref_primary_10_1186_s13717_024_00520_w crossref_primary_10_3390_insects14010084 crossref_primary_10_3390_biology13100803 crossref_primary_10_1007_s10980_024_01920_1 crossref_primary_10_4103_cs_cs_18_77 crossref_primary_10_1007_s00442_024_05528_9 crossref_primary_10_3390_f14071421 crossref_primary_10_3390_f14071302 crossref_primary_10_1007_s40725_024_00239_z crossref_primary_10_1139_cjfr_2023_0058 crossref_primary_10_1007_s10336_020_01765_w crossref_primary_10_1016_j_avrs_2022_100020 crossref_primary_10_1093_ee_nvab060 crossref_primary_10_1111_ecog_07370 crossref_primary_10_3390_f15040648 crossref_primary_10_1016_j_envexpbot_2021_104557 crossref_primary_10_1111_nph_17608 crossref_primary_10_1007_s40725_024_00215_7 crossref_primary_10_1134_S1995425523070144 crossref_primary_10_3897_neobiota_95_126311 crossref_primary_10_1088_1748_9326_adf12e crossref_primary_10_3390_f12060799 crossref_primary_10_3390_f14040792 crossref_primary_10_1007_s40725_023_00189_y crossref_primary_10_1016_j_jag_2025_104663 crossref_primary_10_1007_s42690_024_01191_y crossref_primary_10_1111_ens_12440 crossref_primary_10_1002_rse2_70013 crossref_primary_10_1111_oik_10842 crossref_primary_10_1016_j_ejsobi_2025_103733 crossref_primary_10_1016_j_scitotenv_2025_178995 crossref_primary_10_1093_jee_toae215 crossref_primary_10_1111_afe_12506 crossref_primary_10_1007_s10340_020_01308_5 crossref_primary_10_1093_jee_toaf093 crossref_primary_10_1146_annurev_phyto_021722_024626 crossref_primary_10_46236_umbd_1546075 crossref_primary_10_1016_j_biocontrol_2025_105702 crossref_primary_10_3390_f14061116 crossref_primary_10_1007_s10584_025_03870_2 crossref_primary_10_1093_forestry_cpaa033 crossref_primary_10_1016_j_cois_2019_07_010 crossref_primary_10_1007_s11829_020_09750_z crossref_primary_10_3390_rs12213502 crossref_primary_10_1007_s10530_025_03649_7 crossref_primary_10_1016_j_baae_2025_05_001 crossref_primary_10_3390_s22197100 crossref_primary_10_3390_f14020422 crossref_primary_10_1073_pnas_2424669122 crossref_primary_10_3832_ifor4520_017 crossref_primary_10_1111_oik_10989 crossref_primary_10_3389_ffgc_2024_1490888 crossref_primary_10_1080_02827581_2022_2060303 crossref_primary_10_1007_s40725_019_00098_z crossref_primary_10_3390_su16072946 crossref_primary_10_1007_s41207_024_00650_9 crossref_primary_10_1007_s11676_022_01586_y crossref_primary_10_1111_ecog_07020 crossref_primary_10_3390_f10030264 crossref_primary_10_3390_su16072703 crossref_primary_10_1111_1365_2745_13093 crossref_primary_10_1007_s10530_024_03485_1 crossref_primary_10_1007_s10980_025_02203_z crossref_primary_10_3390_insects16030249 crossref_primary_10_1016_j_foreco_2025_123127 crossref_primary_10_1007_s11056_023_09965_x crossref_primary_10_1111_afe_12672 crossref_primary_10_3390_jof8080788 crossref_primary_10_1007_s13744_024_01226_6 crossref_primary_10_1016_j_foreco_2020_118446 crossref_primary_10_3390_f12040385 crossref_primary_10_1007_s10841_022_00445_9 crossref_primary_10_3389_ffgc_2019_00077 crossref_primary_10_3389_ffgc_2021_670797 crossref_primary_10_1016_j_tree_2024_04_010 crossref_primary_10_3390_f14010031 crossref_primary_10_1016_j_gfs_2020_100348 crossref_primary_10_1007_s00468_023_02475_5 crossref_primary_10_1007_s11676_024_01807_6 crossref_primary_10_1016_j_scitotenv_2024_173377 crossref_primary_10_3390_d16070423 crossref_primary_10_3390_f15010033 crossref_primary_10_1007_s13595_019_0827_x crossref_primary_10_1093_treephys_tpaa087 crossref_primary_10_1371_journal_pone_0307397 crossref_primary_10_1093_ee_nvae089 crossref_primary_10_1016_j_envsoft_2021_105233 crossref_primary_10_1080_0035919X_2022_2152507 crossref_primary_10_3389_fpls_2020_601009 crossref_primary_10_1016_j_foreco_2022_120677 crossref_primary_10_3390_f16061005 crossref_primary_10_1134_S1995425520070094 |
| Cites_doi | 10.1139/cjfr-2016-0211 10.1016/j.japb.2015.01.001 10.1007/s00442-014-2960-4 10.1641/B580607 10.1093/icb/39.2.323 10.1111/j.1461-9563.2012.00575.x 10.1111/afe.12043 10.1016/j.foreco.2015.01.028 10.1126/science.aaa9933 10.1111/icad.12078 10.1007/s10021-012-9629-9 10.1038/nclimate3303 10.1016/j.scitotenv.2016.05.187 10.1016/j.foreco.2012.09.006 10.1016/j.foreco.2012.12.018 10.1111/j.1600-0706.2009.17558.x 10.1002/2016JG003622 10.1111/een.12324 10.1111/j.1461-9563.2006.00321.x 10.1016/j.foreco.2007.05.020 10.1111/gcb.12506 10.1146/annurev.ento.52.110405.091418 10.1111/gcb.12692 10.1128/AEM.00068-13 10.1111/gcb.13142 10.1111/afe.12040 10.1007/s10530-011-9979-9 10.1111/j.1600-0587.2011.06847.x 10.1371/journal.pone.0176269 10.1525/bio.2010.60.8.6 10.1146/annurev-phyto-080614-120207 10.1017/CBO9781107415379.004 10.1111/gcb.13334 10.1007/s11707-016-0582-3 10.1080/02827581.2015.1052751 10.1146/annurev.en.39.010194.001143 10.1002/ece3.665 10.1002/2015GL067532 10.1093/forestry/cpv054 10.1111/afe.12200 10.1016/j.foreco.2015.11.045 10.1093/molbev/msu135 10.1139/x11-134 10.1007/s10584-013-0966-2 10.1111/j.1461-0248.2004.00659.x 10.1111/1365-2664.12644 10.1007/s10841-015-9806-1 10.1111/jvs.12410 10.1098/rspb.2000.1363 10.1007/s10530-013-0521-0 10.1890/09-0655.1 10.1017/pab.2014.11 10.1007/978-94-017-9340-7 10.1111/phen.12200 10.14214/sf.964 10.1016/j.foreco.2016.04.051 10.1016/j.gloplacha.2016.06.002 10.1007/s10265-013-0565-3 10.1146/annurev-ento-010715-023826 10.1016/j.foreco.2012.12.033 10.1016/j.foreco.2016.09.044 10.1080/02827581.2015.1086018 10.1093/ae/47.3.160 10.1134/S199542551606007X 10.1111/afe.12198 10.1080/02827581.2016.1195867 10.1046/j.1461-9563.2002.00124.x 10.1046/j.1365-2311.2003.00509.x 10.5194/bg-13-5277-2016 10.1079/9781780643786.0001 10.1007/s00442-013-2648-1 10.1016/j.cois.2017.03.006 10.1016/B978-0-12-417156-5.00013-7 10.1046/j.1472-4642.2002.00159.x 10.1111/gcb.12842 10.1073/pnas.0508839102 10.1073/pnas.1305533110 10.1007/s10530-010-9918-1 10.1111/phen 10.1007/s00442-012-2474-x 10.1098/rspb.2006.0191 10.1890/06-0512 10.1111/epp.12208 10.1073/pnas.1216666110 10.1007/s13595-017-0645-y 10.1016/j.foreco.2015.03.018 10.1111/gcb.12529 10.1007/s10584-012-0463-z 10.1890/ES12-00338.1 10.5849/forsci.13-056 10.1890/13-0760.1 10.1111/j.1600-0587.2013.00272.x 10.1007/s10530-016-1080-y 10.1111/j.1366-9516.2006.00218.x 10.1088/1748-9326/11/4/045008 10.1126/science.285.5430.1068 10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2 10.1007/s10841-015-9831-0 10.1046/j.1365-2699.1999.00363.x 10.1111/afe.12172 10.1007/s00442-008-1233-5 10.1146/annurev-ecolsys-110512-135858 10.1002/ece3.717 10.1111/j.1365-2656.2007.01339.x 10.1890/04-1903 10.1139/er-2013-0042 10.1016/j.foreco.2017.04.008 10.1007/s10144-017-0589-y 10.1111/nph.13477 10.1111/j.1466-8238.2006.00302.x 10.1890/13-0160.1 10.1002/eap.1463 10.1007/s10342-016-0939-x 10.1111/j.1365-2311.2012.01358.x 10.1038/nature06777 10.1186/s12898-016-0102-z 10.1016/j.scitotenv.2017.05.230 10.1111/j.1365-2699.2011.02673.x 10.1111/afe.12007 10.1007/s13595-013-0287-7 10.1139/x2012-069 10.1111/een.12005 10.1002/eap.1400 10.1890/11-0009.1 10.1371/journal.pone.0114282 10.1890/13-2366.1 10.1016/j.jtbi.2013.06.012 10.1111/gcb.13160 10.1371/journal.pbio.1002323 10.1098/rsbl.2013.0028 10.1002/ecs2.1396 10.1111/afe.12079 10.1139/cjfr-2014-0385 10.1111/j.1365-2486.2006.01124.x 10.1111/een.12400 10.1111/1365-2656.12647 10.1007/s11027-007-9127-0 10.1080/02827581.2015.1079644 10.1016/j.agrformet.2015.06.014 10.1111/j.1365-2311.2008.01045.x 10.1002/ece3.988 10.1073/pnas.1010270107 10.1016/j.agrformet.2013.04.015 10.1079/9781780643786.0173 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 Copyright Springer Science & Business Media 2018 Copyright |
| Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Springer Science & Business Media 2018 – notice: Copyright |
| DBID | C6C AAYXX CITATION 7S9 L.6 1XC VOOES |
| DOI | 10.1007/s40725-018-0075-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology Forestry Environmental Sciences |
| EISSN | 2198-6436 |
| EndPage | 50 |
| ExternalDocumentID | oai:HAL:hal-02629304v1 10_1007_s40725_018_0075_6 |
| GroupedDBID | -EM 0R~ 203 406 AAAVM AACDK AAHBH AAHNG AAIAL AAJBT AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVXWI AXYYD BGNMA C6C CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7S9 L.6 1XC VOOES |
| ID | FETCH-LOGICAL-c426t-9791dba75621c95f912c70efa14b05c93c7fc9c090f66ee7fec7ae3f2da174233 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 278 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432549800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-6436 |
| IngestDate | Tue Oct 14 20:48:14 EDT 2025 Thu Oct 02 07:40:57 EDT 2025 Sun Nov 30 04:07:53 EST 2025 Sat Nov 29 05:56:17 EST 2025 Tue Nov 18 21:45:10 EST 2025 Fri Feb 21 02:42:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Impact Biome Outbreak Review Guild Range Community |
| Language | English |
| License | Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c426t-9791dba75621c95f912c70efa14b05c93c7fc9c090f66ee7fec7ae3f2da174233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3734-3918 |
| OpenAccessLink | https://link.springer.com/10.1007/s40725-018-0075-6 |
| PQID | 2039940105 |
| PQPubID | 2044261 |
| PageCount | 16 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02629304v1 proquest_miscellaneous_2084051490 proquest_journals_2039940105 crossref_citationtrail_10_1007_s40725_018_0075_6 crossref_primary_10_1007_s40725_018_0075_6 springer_journals_10_1007_s40725_018_0075_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Current forestry reports |
| PublicationTitleAbbrev | Curr Forestry Rep |
| PublicationYear | 2018 |
| Publisher | Springer International Publishing Springer Nature B.V Springer |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
| References | HeimonenKValtonenAKontunen-SoppelaSKeski-SaariSRousiMOksanenERoininenHSusceptibility of silver birch (Betula pendula) to herbivorous insects is associated with the size and phenology of birch—implications for climate warmingScand J For Res2017329510410.1080/02827581.2016.1195867 FosterJRTownsendPAMladenoffDJMapping asynchrony between gypsy moth egg-hatch and forest leaf-out: putting the phenological window hypothesis in a spatial contextFor Ecol Manag2013287677610.1016/j.foreco.2012.09.006 AroraVKPengYKurzWAFyfeJCHawkinsBWernerATPotential near-future carbon uptake overcomes losses from a large insect outbreak in British ColumbiaCanada Geophys Res Lett2016432590259810.1002/2015GL0675321:CAS:528:DC%2BC28Xmt12ns7s%3D PéréCJactelHKenisMResponse of insect parasitism to elevation depends on host and parasitoid life-history strategiesBiol Lett201392013002810.1098/rsbl.2013.0028 KivimäenpääMGhimireRPSutinenSHäikiöEKasurinenAHolopainenTHolopainenJKIncreases in volatile organic compound emissions of scots pine in response to elevated ozone and warming are modified by herbivory and soil nitrogen availabilityEur J For Res201613534336010.1007/s10342-016-0939-x1:CAS:528:DC%2BC28XitFCjtrg%3D DavidGGiffardBPiouDRoquesAJactelHPotential effects of climate warming on the survivorship of adult Monochamus galloprovincialisAgr For Entomol20171919219910.1111/afe.12200 GrayDRQuantifying the sources of epistemic uncertainty in model predictions of insect disturbances in an uncertain climateAnn For Sci2017744810.1007/s13595-017-0645-y AgostaSJHulshofCMStaatsEGOrganismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forestsJ Anim Ecol20178659060410.1111/1365-2656.12647 KwonT-SLeeCMKimS-SPrediction of abundance of beetles according to climate warming in South KoreaJ Asia-Pac Biodivers2015873010.1016/j.japb.2015.01.001 JamiesonMASchwartzbergEGRaffaKFReichPBLindrothRLExperimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivoreGlob Chang Biol2015212698271010.1111/gcb.12842 VisserMEHollemanLJMWarmer springs disrupt the synchrony of oak and winter moth phenologyProc Royal Soc Lond B – Biol Sci200126828929410.1098/rspb.2000.13631:STN:280:DC%2BD3Mzjslynsg%3D%3D GherlendaANMooreBDHaighAMJohnsonSNRieglerMInsect herbivory in a mature eucalyptus woodland canopy depends on leaf phenology but not CO2 enrichmentBMC Ecol2016164710.1186/s12898-016-0102-z BattistiAStastnyMNethererSRobinetCSchopfARoquesALarssonSExpansion of geographic range in pine processionary moth caused by increasing winter temperaturesEcol Appl2005152084209610.1890/04-1903 KarlsenSRJepsenJUOdlandAImsRAElvebakkAOutbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communitiesOecologia201317385987010.1007/s00442-013-2648-1 FitzpatrickMCPreisserELPorterAElkintonJEllisonAMModeling range dynamics in heterogeneous landscapes: invasion of the hemlock woolly adelgid in eastern North AmericaEcol Appl20122247248610.1890/11-0009.1 RaffaKFPowellENTownsendPATemperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defensesProc Natl Acad Sci USA20131102193219810.1073/pnas.1216666110Describes the interactions of the mountain pine beetle with a novel host plant. KlapwijkMJCsókaGHirkaABjörkmanCForest insects and climate change: long-term trends in herbivore damageEcol Evol.201334183419610.1002/ece3.717 SidderAMKumarSLaituriMSiboldJSUsing spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetleEcosphere20167e0139610.1002/ecs2.1396 CandauJ-NFlemingRForecasting the response of spruce budworm defoliation to climate change in OntarioCan J For Res2011411948196010.1139/x11-134 HuttunenLSaravesiKMarkkolaANiemeläPDo elevations in temperature, CO2, and nutrient availability modify belowground carbon gain and root morphology in artificially defoliated silver birch seedlings?Ecol Evol201332783279410.1002/ece3.665 ChungHMuraokaHNakamuraMHanSMullerOSonYExperimental warming studies on tree species and forest ecosystems: a literature reviewJ Plant Res201312644746010.1007/s10265-013-0565-3 JohnsonDMBjørnstadONLiebholdAMLandscape geometry and travelling waves in the larch budmothEcol Lett2004796797410.1111/j.1461-0248.2004.00659.x ClarkJSIversonLWoodallCWAllenCDBellDMBraggDCD'AmatoAWDavisFWHershMHIbanezIJacksonSTMatthewsSPedersonNPetersMSchwartzMWWaringKMZimmermannNEThe impacts of increasing drought on forest dynamics, structure, and biodiversity in the United StatesGlob Chang Biol2016222329235210.1111/gcb.13160 ZhangXLeiYMaZKneeshawDPengCInsect-induced tree mortality of boreal forests in eastern Canada under a changing climateEcol Evol.201442384239410.1002/ece3.988 SuTAdamsJMWapplerTHuangY-JJacquesFMBLiuY-SZhouZ-KResilience of plant-insect interactions in an oak lineage through quaternary climate changePaleobiol20154117418610.1017/pab.2014.11 KurzWAAppsMJA 70-year retrospective analysis of carbon fluxes in the Canadian forest sectorEcol Appl2008952654710.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2 RobinetCBaierPPennerstorferJSchopfARoquesAModelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in FranceGlob Ecol Biogeog20071646047110.1111/j.1466-8238.2006.00302.x FurlongMJZaluckiMPClimate change and biological control: the consequences of increasing temperatures on host–parasitoid interactionsCurr Opin Insect Sci201720394410.1016/j.cois.2017.03.006 TudoranM-MMarquerLJönssonAMHistorical experience (1850–1950 and 1961–2014) of insect species responsible for forest damage in Sweden: influence of climate and land management changesFor Ecol Manag201638134735910.1016/j.foreco.2016.09.044 TamburiniGMariniLHellriglKSalvadoriCBattistiAEffects of climate and density-dependent factors on population dynamics of the pine processionary moth in the southern alpsClimat Chang201312170171210.1007/s10584-013-0966-2 SeidlRThomDKautzMMartin-BenitoDPeltoniemiMVacchianoGWildJAscoliDPetrMHonkaniemiJLexerMJTrotsiukVMairotaPSvobodaMFabrikaMNagelAReyerCPOForest disturbances under climate changeNat Clim Chang20177639540210.1038/nclimate3303 PureswaranDSDe GrandpréLDParéDTaylorABarretteMMorinHRégnièreJKneeshawDDClimate-induced changes in host tree-insect phenology may drive ecological state-shift in boreal forestsEcology2015961480149110.1890/13-2366.1 WilliamsDWLiebholdAMClimate change and the outbreak ranges of two north American bark beetlesAgric For Entomol20024879910.1046/j.1461-9563.2002.00124.x RégnièreJSt-AmantRDuvalPPredicting insect distributions under climate change from physiological responses: spruce budworm as an exampleBiol Invas.2012141571158610.1007/s10530-010-9918-1 ZouYSangWAxmacherJCResilience of insect assemblages to climate change in mature temperate mountain forests of NE ChinaJ Insect Conserv2015191163117210.1007/s10841-015-9831-0 FordhamDAMesocosms reveal ecological surprises from climate changePLoS Biol201513e100232310.1371/journal.pbio.10023231:CAS:528:DC%2BC28XnsVSitr4%3D Roques A. Processionary moths and climate change: an update. 2015; Springer-Quae, Dordrecht. An overview of the processionary moths and their relationships with climate change. WainhouseDInwardDJGMorganGModelling geographical variation in voltinism of Hylobius abietis under climate change and implications for managementAgr For Entomol.20141613614610.1111/afe.12043 ParadisAElkintonJHayhoeKBuonaccorsiJRole of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North AmericaMitig Adapt Strat Glob Change20081354155410.1007/s11027-007-9127-0 JohnsonDMBüntgenUFrankDCKausrudKHaynesKJLiebholdAMEsperJStensethNCClimatic warming disrupts recurrent alpine insect outbreaksProc Natl Acad Sci U S A2010107205762058110.1073/pnas.1010270107 EFSA and Panel on Plant HealthRisk assessment of the oriental chestnut gall wasp, Dryocosmus kuriphilus for the EU territory on request from the European CommissionEFSA J201081114 FierravantiACocozzaCPalomboCRossiSDeslauriersATognettiREnvironmental-mediated relationships between tree growth of black spruce and abundance of spruce budworm along a latitudinal transect in QuebecCanada Agr For Meteorol2015213536310.1016/j.agrformet.2015.06.014 GherlendaANEsveldJLHallAAGDuursmaRARieglerMBoom and bust: rapid feedback responses between insect outbreak dynamics and canopy leaf area impacted by rainfall and CO2Glob Chang Biol2016223632364110.1111/gcb.13334 KurzWADymondCCStinsonGRampleyGJNeilsonETCarrollALEbataTSafranyikLMountain pine beetle and forest carbon feedback to climate changeNature200845298799010.1038/nature067771:CAS:528:DC%2BD1cXltVGrtrY%3DOne of the largest ever documented impacts of an insect on forest and carbon cycle BentzBJRegniereJFettigCJHansenEMHayesJLHickeJAKelseyRGNegronJFSeyboldSJClimate change and bark beetles of the western United States and Canada: direct and indirect effectsBioscience20106060261310.1525/bio.2010.60.8.6 StiremanJOIIIDyerLAJanzenDHSingerMSLillJTMarquisRJRicklefsREGentryGLHallwachsWColeyPDBaroneJAGreeneyHFConnahsHBarbosaPMoraisHCDinizIRClimatic unpredictability and parasitism of caterpillars: implications of global warmingProc Natl Acad Sci2005102173841738710.1073/pnas.05088391021:CAS:528:DC%2BD2MXhtlSqtb%2FO KozlovMVvan NieukerkenEJZverevVZverevaELAbundance and diversity of birch-feeding leaf miners along latitudinal gradients in northern EuropeEcography2013361138114910.1111/j.1600-0587.2013.00272.x Tobin PC, Turcotte RM, Blackburn LM, Juracko JA, Simpson BT. The big chill: quantifying the effect of the 2014 north American cold wave on hemlock woolly adelgid populations in the central Appalachian Mountains. Popul Ecol 2017; https://doi.org/10.1007/s10144-017-0589-y. BentzBVandygriffJJensenCColemanTMaloneyPSmithSGradyASchen-LangenheimGMountain pine beetle voltinism and life history characteristics across latitudinal and elevational grad AS Weed (75_CR20) 2013; 83 I Kollberg (75_CR90) 2013; 38 BD Roitberg (75_CR33) 2016; 41 J-S Landry (75_CR131) 2016; 13 DM Johnson (75_CR52) 2010; 107 A Roques (75_CR78) 2016; 18 AR Hof (75_CR73) 2016; 31 JA Logan (75_CR110) 2001; 47 ML Hillstrom (75_CR138) 2014; 7 JH Myers (75_CR35) 2017; 62 JA Uelmen Jr (75_CR39) 2016; 362 T Su (75_CR24) 2015; 41 75_CR77 EL Zvereva (75_CR81) 2016; 566-567 E Youngsteadt (75_CR89) 2015; 21 MD Hunter (75_CR135) 2014; 20 X Zhang (75_CR119) 2014; 4 AM Sidder (75_CR57) 2016; 7 JJ Worrall (75_CR126) 2013; 299 MJ Klapwijk (75_CR27) 2013; 3 P Baier (75_CR99) 2007; 249 T Ammunét (75_CR47) 2012; 37 MJ Ungerer (75_CR54) 1999; 26 C Leppanen (75_CR31) 2017; 19 S Backhaus (75_CR87) 2014; 8 75_CR82 R Seidl (75_CR5) 2017; 76 JA Banfield-Zanin (75_CR103) 2015; 17 WRL Anderegg (75_CR7) 2015; 208 Y Boulanger (75_CR28) 2012; 42 75_CR86 75_CR1 J Esper (75_CR51) 2007; 274 AJ Allstadt (75_CR12) 2013; 172 D Thom (75_CR149) 2017; 54 75_CR3 C Péré (75_CR144) 2013; 9 75_CR2 SR Karlsen (75_CR123) 2013; 173 75_CR128 WA Kurz (75_CR133) 2008; 9 A Paradis (75_CR68) 2008; 13 A Valtonen (75_CR148) 2013; 4 MC Fitzpatrick (75_CR69) 2012; 22 JJ Turgeon (75_CR115) 1994; 39 A Battisti (75_CR132) 2015 G Tamburini (75_CR92) 2013; 121 Y Zou (75_CR145) 2015; 19 JR Muirhead (75_CR53) 2006; 12 P Turchin (75_CR146) 1999; 285 JU Jepsen (75_CR25) 2013; 16 AN Gherlenda (75_CR105) 2016; 16 BN Poncet (75_CR117) 2009; 159 A Fierravanti (75_CR79) 2015; 213 75_CR118 DA Fordham (75_CR40) 2015; 13 MV Kozlov (75_CR102) 2017; 601–602 MV Lantschner (75_CR76) 2014; 16 JH Myers (75_CR11) 2013; 44 DW Williams (75_CR9) 2002; 4 DJG Inward (75_CR100) 2012; 14 DP Bebber (75_CR21) 2015; 53 KF Raffa (75_CR59) 2013; 110 JS Clark (75_CR29) 2016; 22 C Robinet (75_CR42) 2007; 16 KJ Haynes (75_CR26) 2014; 20 L Berec (75_CR97) 2013; 292 JRM Robson (75_CR80) 2015; 347 AL Addison (75_CR147) 2013; 335 BJ Bentz (75_CR16) 2010; 60 AS Adams (75_CR58) 2013; 79 F Chinellato (75_CR141) 2014; 16 A Rubin-Aguirre (75_CR142) 2015; 343 T-S Kwon (75_CR143) 2015; 8 M Schebeck (75_CR112) 2017; 42 M Kivimäenpää (75_CR84) 2016; 135 JA Logan (75_CR134) 2010; 20 KM Renwick (75_CR127) 2016; 27 AFG Dixon (75_CR109) 2003; 28 EG Schwartzberg (75_CR37) 2014; 175 SE Smith (75_CR64) 2013; 15 M-M Tudoran (75_CR150) 2016; 381 L Huttunen (75_CR121) 2013; 3 BJ Bentz (75_CR63) 2015 KF Raffa (75_CR10) 2008; 58 J Jing (75_CR140) 2017; 11 75_CR32 BJ Bentz (75_CR62) 2016; 89 P Walker (75_CR66) 2002; 8 JI Barredo (75_CR65) 2015; 45 L Huttunen (75_CR122) 2013; 47 DR Gray (75_CR45) 2017; 74 B Bentz (75_CR61) 2014; 60 RD DeSantis (75_CR95) 2013; 178–179 M Asch van (75_CR108) 2007; 52 JOIII Stireman (75_CR106) 2005; 102 HMC Giroday De la (75_CR56) 2012; 39 MV Kozlov (75_CR101) 2013; 36 CA Williams (75_CR14) 2016; 143 O Ovaskainen (75_CR136) 2013; 110 MJ Furlong (75_CR34) 2017; 20 A Battisti (75_CR49) 2005; 15 JU Jepsen (75_CR46) 2008; 77 K Voolma (75_CR85) 2016; 18 SJ Agosta (75_CR94) 2017; 86 75_CR41 75_CR43 KR Sambaraju (75_CR111) 2012; 35 ME Visser (75_CR83) 2001; 268 DM Johnson (75_CR19) 2004; 7 75_CR48 AR Hof (75_CR75) 2016; 31 VK Arora (75_CR130) 2016; 43 D Wainhouse (75_CR114) 2014; 16 M Marquis (75_CR139) 2014; 95 DT Price (75_CR4) 2013; 21 PMA James (75_CR120) 2017; 27 JR Foster (75_CR88) 2013; 287 Å Berggren (75_CR107) 2009; 118 C Robinet (75_CR22) 2014; 71 K Heimonen (75_CR137) 2017; 32 H Chung (75_CR36) 2013; 126 M Saulnier (75_CR93) 2017; 47 RB Huey (75_CR30) 1999; 39 LA Cooper (75_CR13) 2017; 122 A Battisti (75_CR23) 2006; 12 C Robinet (75_CR50) 2012; 14 75_CR91 EFSA and Panel on Plant Health (75_CR67) 2010; 8 Y Boulanger (75_CR70) 2016; 22 75_CR96 75_CR15 N Mietkiewicz (75_CR129) 2016; 26 M Groot de (75_CR125) 2015; 19 N Björklund (75_CR74) 2016; 31 DS Pureswaran (75_CR18) 2015; 96 J Régnière (75_CR44) 2012; 14 JK Trân (75_CR55) 2007; 17 MA Jamieson (75_CR38) 2015; 21 WA Kurz (75_CR6) 2008; 452 J-N Candau (75_CR17) 2011; 41 L Marini (75_CR113) 2012; 115 AN Gherlenda (75_CR104) 2016; 22 CI Millar (75_CR8) 2015; 349 JK Janes (75_CR60) 2014; 31 G David (75_CR98) 2017; 19 BJ Cooke (75_CR71) 2017; 396 J-M Sachet (75_CR116) 2009; 34 VI Kharuk (75_CR124) 2016; 9 E Buffo (75_CR72) 2007; 9 |
| References_xml | – reference: MarquisMDel ToroIPeliniSLInsect mutualisms buffer warming effects on multiple trophic levelsEcology20149591310.1890/13-0760.1 – reference: ThomDRammerWDirnböckTMüllerJKoblerJKatzensteinerKHelmNSeidlRThe impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscapeJ Appl Ecol201754283810.1111/1365-2664.12644 – reference: Nicholls N. et al. Observed climate variability and change. In: Climate change 1995: the science of climate change. Intergovernmental Panel on Climate Change (IPCC). Cambridge Univ. Press, Cambridge; 1996. p. 133. – reference: •• Field CB, Barros VR, Mach KJ, Mastrandrea MD, van Aalst M, Adger WN, Arent DJ, Barnett J, Betts R, Bilir TE, Birkmann J, Carmin J, Chadee DD, Challinor AJ, Chatterjee M, Cramer W, Davidson DJ, Estrada YO, Gattuso J-P, Hijioka Y, Hoegh-Guldberg O, Huang HQ, Insarov GE, Jones RN, Kovats RS, Romero-Lankao P, Larsen JN, Losada IJ, Marengo JA, McLean RF, Mearns LO, Mechler R, Morton JF, Niang I, Oki T, Olwoch JM, Opondo M, Poloczanska ES, Pörtner H-O, Redsteer MH, Reisinger A, Revi A, Schmidt DN, Shaw MR, Solecki W, Stone DA, Stone JMR, Strzepek KM, Suarez AG, Tschakert P, Valentini R, Vicuña S, Villamizar A, Vincent KE, Warren R, White LL, Wilbanks TJ, Wong PP, and Yohe GW. Technical summary. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, and White LL. Editors. Climate change 2014: Impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge; pp. 35-94. Sets the scene for current and future climate change research. – reference: KozlovMVvan NieukerkenEJZverevVZverevaELAbundance and diversity of birch-feeding leaf miners along latitudinal gradients in northern EuropeEcography2013361138114910.1111/j.1600-0587.2013.00272.x – reference: • Roques A. Processionary moths and climate change: an update. 2015; Springer-Quae, Dordrecht. An overview of the processionary moths and their relationships with climate change. – reference: UngererMJAyresMPLombarderoMJClimate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae)J Biogeogr1999261133114510.1046/j.1365-2699.1999.00363.x – reference: Banfield-ZaninJALeatherSRSeason and drought stress mediate growth and weight of the green spruce aphid on Sitka spruceAgr For Entomol.201517485610.1111/afe.12079 – reference: RégnièreJSt-AmantRDuvalPPredicting insect distributions under climate change from physiological responses: spruce budworm as an exampleBiol Invas.2012141571158610.1007/s10530-010-9918-1 – reference: • Rosenberger DW, Venette RC, Maddox MP, Aukema BH. Colonization behaviors of mountain pine beetle on novel hosts: implications for range expansion into Northeastern North America. PLoS ONE. 2017; https://doi.org/10.1371/journal.pone.0176269. Uses manipulative experiments to test susceptibility of naïve host species to a range-expanding, tree-killing pest. – reference: UelmenJAJrLindrothRLTobinPCReichPBSchwartzbergEGRaffaKFEffects of winter temperatures, spring degree-day accumulation, and insect population source on phenological synchrony between forest tent caterpillar and host treesFor Ecol Manag201636224125010.1016/j.foreco.2015.11.045 – reference: SuTAdamsJMWapplerTHuangY-JJacquesFMBLiuY-SZhouZ-KResilience of plant-insect interactions in an oak lineage through quaternary climate changePaleobiol20154117418610.1017/pab.2014.11 – reference: PureswaranDSDe GrandpréLDParéDTaylorABarretteMMorinHRégnièreJKneeshawDDClimate-induced changes in host tree-insect phenology may drive ecological state-shift in boreal forestsEcology2015961480149110.1890/13-2366.1 – reference: KurzWAAppsMJA 70-year retrospective analysis of carbon fluxes in the Canadian forest sectorEcol Appl2008952654710.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2 – reference: BentzBJJönssonAMVegaFEHofstetterRWModeling bark beetle responses to climate changeBark beetles2015San DiegoAcademic press53355310.1016/B978-0-12-417156-5.00013-7Reviews the modeling approach to the bark beetle dynamics under a climate change scenario. – reference: JamesPMARobertL-EWottonBMMartellDLFlemingRALagged cumulative spruce budworm defoliation affects the risk of fire ignition in OntarioCanada Ecol Appl20172753254410.1002/eap.1463 – reference: KharukVIDemidkoDAFedotovaEVDvinskayaMLBudnikUASpatial and temporal dynamics of Siberian silk moth large-scale outbreak in dark-needle coniferous tree stands in AltaiContemp Prob Ecol2016971172010.1134/S199542551606007X – reference: BentzBJRegniereJFettigCJHansenEMHayesJLHickeJAKelseyRGNegronJFSeyboldSJClimate change and bark beetles of the western United States and Canada: direct and indirect effectsBioscience20106060261310.1525/bio.2010.60.8.6 – reference: BentzBVandygriffJJensenCColemanTMaloneyPSmithSGradyASchen-LangenheimGMountain pine beetle voltinism and life history characteristics across latitudinal and elevational gradients in the western United StatesFor Sci201460434449 – reference: FurlongMJZaluckiMPClimate change and biological control: the consequences of increasing temperatures on host–parasitoid interactionsCurr Opin Insect Sci201720394410.1016/j.cois.2017.03.006 – reference: Tobin PC, Turcotte RM, Blackburn LM, Juracko JA, Simpson BT. The big chill: quantifying the effect of the 2014 north American cold wave on hemlock woolly adelgid populations in the central Appalachian Mountains. Popul Ecol 2017; https://doi.org/10.1007/s10144-017-0589-y. – reference: ZouYSangWAxmacherJCResilience of insect assemblages to climate change in mature temperate mountain forests of NE ChinaJ Insect Conserv2015191163117210.1007/s10841-015-9831-0 – reference: De la GirodayHMCCarrollALAukemaBHBreach of the northern Rocky Mountain geoclimatic barrier: initiation of range expansion by the mountain pine beetleJ Biogeogr2012391112112310.1111/j.1365-2699.2011.02673.x – reference: DixonAFGClimate change and phenological asynchronyEcol Entomol.20032838038110.1046/j.1365-2311.2003.00509.x – reference: CandauJ-NFlemingRForecasting the response of spruce budworm defoliation to climate change in OntarioCan J For Res2011411948196010.1139/x11-134 – reference: WalkerPLeatherSRCrawleyMJDifferential rates of invasion in three related alien oak gall wasps (Cynipidae: hymenoptera)Diver Distrib.2002833534910.1046/j.1472-4642.2002.00159.x – reference: MillarCIStephensonNLTemperate forest health in an era of emerging megadisturbanceScience201534982382610.1126/science.aaa99331:CAS:528:DC%2BC2MXhtlKltrbN – reference: AllstadtAJHaynesKJLiebholdAMJohnsonDMLong-term shifts in the cyclicity of outbreaks of a forest-defoliating insectOecologia201317214115110.1007/s00442-012-2474-x – reference: CookeBJCarrollALPredicting the risk of mountain pine beetle spread to eastern pine forests: considering uncertainty in uncertain timesFor Ecol Manag2017396112510.1016/j.foreco.2017.04.008 – reference: BattistiAStastnyMBuffoELarssonSA rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomalyGlob Chang Biol20061266267110.1111/j.1365-2486.2006.01124.x – reference: Pepi AA, Vinstad OPL, Ek M, Jepsen JU. Elevationally biased avian predation as a contributor to the spatial distribution of geometrid moth outbreaks in sub-arctic mountain birch forest. Ecol Entomol. 2017. https://doi.org/10.1111/een.12400. – reference: HuttunenLAyresMPNiemeläPHeiskaSTegelbergRRousiMKellomäkiSInteractive effects of defoliation and climate change on compensatory growth of silver birch seedlingsSilva Fennica20134711410.14214/sf.964 – reference: BoulangerYArseneaultDMorinHJardonYBertrandPDagneauCDendrochronological reconstruction of spruce budworm (Choristoneura fumiferana) outbreaks in southern Quebec for the last 400 yearsCan J For Res2012421264127610.1139/x2012-069 – reference: DeSantisRDMoserWKGormansonDDBartlettMGVermuntBEffects of climate on emerald ash borer mortality and the potential for ash survival in North AmericaAgr For Meteorol2013178–17912012810.1016/j.agrformet.2013.04.015 – reference: PoncetBNGaratPManelSRoquesADespresLThe effect of climate on masting in the European larch and on its specific seed predatorsOecologia200915952753710.1007/s00442-008-1233-5 – reference: HeimonenKValtonenAKontunen-SoppelaSKeski-SaariSRousiMOksanenERoininenHSusceptibility of silver birch (Betula pendula) to herbivorous insects is associated with the size and phenology of birch—implications for climate warmingScand J For Res2017329510410.1080/02827581.2016.1195867 – reference: MariniLAyresMPBattistiAFaccoliMClimate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetleClimat Chang.201211532734110.1007/s10584-012-0463-z – reference: BoulangerYGrayDRCookeBJDe GrandpréLModel-specification uncertainty in future forest pest outbreaksGlob Chang Biol2016221595160710.1111/gcb.13142 – reference: SeidlRThomDKautzMMartin-BenitoDPeltoniemiMVacchianoGWildJAscoliDPetrMHonkaniemiJLexerMJTrotsiukVMairotaPSvobodaMFabrikaMNagelAReyerCPOForest disturbances under climate changeNat Clim Chang20177639540210.1038/nclimate3303 – reference: RaffaKFAukemaBHBarbaraJBentzBJCarrollALHicke JAJATurner MGMGRomme WHWHCross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptionsBioscience20085850151710.1641/B580607 – reference: GherlendaANEsveldJLHallAAGDuursmaRARieglerMBoom and bust: rapid feedback responses between insect outbreak dynamics and canopy leaf area impacted by rainfall and CO2Glob Chang Biol2016223632364110.1111/gcb.13334 – reference: FitzpatrickMCPreisserELPorterAElkintonJEllisonAMModeling range dynamics in heterogeneous landscapes: invasion of the hemlock woolly adelgid in eastern North AmericaEcol Appl20122247248610.1890/11-0009.1 – reference: RaffaKFPowellENTownsendPATemperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defensesProc Natl Acad Sci USA20131102193219810.1073/pnas.1216666110Describes the interactions of the mountain pine beetle with a novel host plant. – reference: AddisonALPowellJASixDLMooreMBentzBJThe role of temperature variability in stabilizing the mountain pine beetle–fungus mutualismJ Theor Biol2013335405010.1016/j.jtbi.2013.06.0121:STN:280:DC%2BC3sjkvFWnsQ%3D%3D – reference: HueyRBBerriganDGilchrGWHerronJCTesting the adaptive significance of acclimation: a strong inference approachAmer Zool19993932333610.1093/icb/39.2.323 – reference: Jameson RG, Trant AJ, Hermanutz L. Insects can limit seed productivity at the treeline. Can J For Res. 2015;45:286 296. – reference: SambarajuKRCarrollALZhuJStahlKMooreRDAukemaBHClimate change could alter the distribution of mountain pine beetle outbreaks in western CanadaEcography20123521122310.1111/j.1600-0587.2011.06847.x – reference: RenwickKMRoccaMEStohlgrenTJBiotic disturbance facilitates range shift at the trailing but not the leading edge of lodgepole pine’s altitudinal distributionJ Veget Sci20162778078810.1111/jvs.12410 – reference: HofARSvahlinAThe potential effect of climate change on the geographical distribution of insect pest species in the Swedish boreal forestScand J For Res201631293910.1080/02827581.2015.1052751 – reference: SchebeckMHansenMSchopfAGregoryJRaglandCBentzBJDiapause and overwintering of two spruce bark beetle speciesPhys Entomol20174220021010.1111/phen.122001:CAS:528:DC%2BC2sXht1yktbfJ – reference: HillstromMLCoutureJJLindrothRLElevated carbon dioxide and ozone have weak, idiosyncratic effects on herbivorous forest insect abundance, species richness, and community compositionInsect Conserv Diver2014755356210.1111/icad.12078 – reference: FosterJRTownsendPAMladenoffDJMapping asynchrony between gypsy moth egg-hatch and forest leaf-out: putting the phenological window hypothesis in a spatial contextFor Ecol Manag2013287677610.1016/j.foreco.2012.09.006 – reference: AgostaSJHulshofCMStaatsEGOrganismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forestsJ Anim Ecol20178659060410.1111/1365-2656.12647 – reference: JohnsonDMBjørnstadONLiebholdAMLandscape geometry and travelling waves in the larch budmothEcol Lett2004796797410.1111/j.1461-0248.2004.00659.x – reference: LandryJ-SParrottLPriceDRamankuttyNDamonMHModelling long-term impacts of mountain pine beetle outbreaks on merchantable biomass, ecosystem carbon, albedo, and radiative forcingBiogeosciences2016135277529510.5194/bg-13-5277-2016 – reference: VisserMEHollemanLJMWarmer springs disrupt the synchrony of oak and winter moth phenologyProc Royal Soc Lond B – Biol Sci200126828929410.1098/rspb.2000.13631:STN:280:DC%2BD3Mzjslynsg%3D%3D – reference: CooperLABallantyneAPHoldenZALandguthELDisturbance impacts on land surface temperature and gross primary productivity in the western United StatesJ Geophys Res Biogeosci201712293094610.1002/2016JG003622 – reference: KurzWADymondCCStinsonGRampleyGJNeilsonETCarrollALEbataTSafranyikLMountain pine beetle and forest carbon feedback to climate changeNature200845298799010.1038/nature067771:CAS:528:DC%2BD1cXltVGrtrY%3DOne of the largest ever documented impacts of an insect on forest and carbon cycle – reference: RoitbergBDMangelMCold snaps and heat waves on arthropodsEcol Entomol.20164165365910.1111/een.12324 – reference: ClarkJSIversonLWoodallCWAllenCDBellDMBraggDCD'AmatoAWDavisFWHershMHIbanezIJacksonSTMatthewsSPedersonNPetersMSchwartzMWWaringKMZimmermannNEThe impacts of increasing drought on forest dynamics, structure, and biodiversity in the United StatesGlob Chang Biol2016222329235210.1111/gcb.13160 – reference: HuttunenLSaravesiKMarkkolaANiemeläPDo elevations in temperature, CO2, and nutrient availability modify belowground carbon gain and root morphology in artificially defoliated silver birch seedlings?Ecol Evol201332783279410.1002/ece3.665 – reference: van AschMVisserMEPhenology of forest caterpillars and their host trees: the importance of synchronyAnnu Rev Entomol200752375510.1146/annurev.ento.52.110405.0914181:CAS:528:DC%2BD2sXhtFWntbk%3D – reference: Rubin-AguirreASaenz-RomeroCLindig-CisnerosRdel -Rio-MoraAATena-MorelosCACampos-BolañosRdel -ValEBark beetle pests in an altitudinal gradient of a Mexican managed forestFor Ecol Manag2015343737910.1016/j.foreco.2015.01.028 – reference: FierravantiACocozzaCPalomboCRossiSDeslauriersATognettiREnvironmental-mediated relationships between tree growth of black spruce and abundance of spruce budworm along a latitudinal transect in QuebecCanada Agr For Meteorol2015213536310.1016/j.agrformet.2015.06.014 – reference: RobinetCRousseletJRoquesAPotential spread of the pine processionary moth in France: preliminary results from a simulation model and future challengesAnn For Sci20147114916010.1007/s13595-013-0287-7 – reference: RobinetCBaierPPennerstorferJSchopfARoquesAModelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in FranceGlob Ecol Biogeog20071646047110.1111/j.1466-8238.2006.00302.x – reference: SmithSEMendozaMGZúñigaGHalbrookKHayesJLByrneDNPredicting the distribution of a novel bark beetle and its pine hosts under future climate conditionsAgr For Entomol.20131521222610.1111/afe.12007 – reference: LoganJAPowellJAGhost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae)Am Entomol20014716017310.1093/ae/47.3.160 – reference: JingJXiaLLiKDevelopment of defoliating insects and their preferences for host plants under varying temperatures in a subtropical evergreen forest in eastern ChinaFront Earth Sci20171132133110.1007/s11707-016-0582-31:CAS:528:DC%2BC28Xhs1aqtLvP – reference: TamburiniGMariniLHellriglKSalvadoriCBattistiAEffects of climate and density-dependent factors on population dynamics of the pine processionary moth in the southern alpsClimat Chang201312170171210.1007/s10584-013-0966-2 – reference: Kolb TE, Fettig CJ, Ayres MP, Bentz BJ, Hicke JA, Mathiasen R, Stewart JE, Weed AS. Observed and anticipated impacts of drought on forest insects and diseases in the United States For Ecol Manag 2016;380:321–334. – reference: Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, et al. (2011) A proposed unified framework for biological invasions. TREE. 2011; 26:333–339. – reference: MyersJHCoryJSPopulation cycles in forest Lepidoptera revisitedAnnu Rev Ecol Evol Syst20134456559210.1146/annurev-ecolsys-110512-135858A thorough review on major factors affecting Lepidoptera population cycles. – reference: WeedASAyresMPHickeJAConsequences of climate change for biotic disturbances in north American forestsEcol Monogr20138344147010.1890/13-0160.1 – reference: InwardDJGWainhouseDPeaceAThe effect of temperature on the development and life cycle regulation of the pine weevil, Hylobius abietis and the potential impacts of climate changeAgr For Entomol.20121434835710.1111/j.1461-9563.2012.00575.x – reference: AmmunétTKaukorantaTSaikkonenKRepoTKlemolaTInvading and resident defoliators in a changing climate: cold tolerance and predictions concerning extreme winter cold as a range-limiting factorEcol Entomol.20123721222010.1111/j.1365-2311.2012.01358.x – reference: BerggrenÅBjörkmanCBylundHAyresMPThe distribution and abundance of animal populations in a climate of uncertaintyOikos20091181121112610.1111/j.1600-0706.2009.17558.x – reference: SchwartzbergEGJamiesonMARaffaKFReichPBMontgomeryRALindrothRLSimulated climate warming alters phenological synchrony between an outbreak insect herbivore and host treesOecologia20141751041104910.1007/s00442-014-2960-4 – reference: ParadisAElkintonJHayhoeKBuonaccorsiJRole of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North AmericaMitig Adapt Strat Glob Change20081354155410.1007/s11027-007-9127-0 – reference: Meigs GW, Zald HSJ, Campbell JL, Keeton WS, Kennedy RE. Do insect outbreaks reduce the severity of subsequent forest fires? Environ Res Lett. 2016; https://doi.org/10.1088/1748-9326/11/4/045008. – reference: KwonT-SLeeCMKimS-SPrediction of abundance of beetles according to climate warming in South KoreaJ Asia-Pac Biodivers2015873010.1016/j.japb.2015.01.001 – reference: TurgeonJJRoquesAde GrootPInsect fauna of coniferous seed cones: diversity, host plant interactions, and managementAnnu Rev Entomol19943917921210.1146/annurev.en.39.010194.001143 – reference: KollbergIBylundHSchmidtAGershenzonJBjörkmanCMultiple effects of temperature, photoperiod and food quality on the performance of a pine sawflyEcol Entomol20133820120810.1111/een.12005 – reference: JohnsonDMBüntgenUFrankDCKausrudKHaynesKJLiebholdAMEsperJStensethNCClimatic warming disrupts recurrent alpine insect outbreaksProc Natl Acad Sci U S A2010107205762058110.1073/pnas.1010270107 – reference: LantschnerMVVillacideJMGarnasJRCroftPCarnegieAJLiebholdAMCorleyJCTemperature explains variable spread rates of the invasive woodwasp, Sirex noctilio, in the southern hemisphereBiol Invas.20141632933910.1007/s10530-013-0521-0 – reference: BackhausSWiehlDBeierkuhnleinCJentschAWellsteinCWarming and drought do not influence the palatability of Quercus pubescens Willd. leaves of four European provenancesArthropod-Plant Interact20148329337 – reference: BerecLDoležalPHaisMPopulation dynamics of Ips typographus in the Bohemian Forest (Czech Republic): validation of the phenology model PHENIPS and impacts of climate changeFor Ecol Manag20132921910.1016/j.foreco.2012.12.018 – reference: StiremanJOIIIDyerLAJanzenDHSingerMSLillJTMarquisRJRicklefsREGentryGLHallwachsWColeyPDBaroneJAGreeneyHFConnahsHBarbosaPMoraisHCDinizIRClimatic unpredictability and parasitism of caterpillars: implications of global warmingProc Natl Acad Sci2005102173841738710.1073/pnas.05088391021:CAS:528:DC%2BD2MXhtlSqtb%2FO – reference: de GrootMKogojMTemperature, leaf cover density and solar radiation influence the abundance of an oligophagous insect herbivore at the southern edge of its rangeJ Insect Conserv20151989189910.1007/s10841-015-9806-1 – reference: ZhangXLeiYMaZKneeshawDPengCInsect-induced tree mortality of boreal forests in eastern Canada under a changing climateEcol Evol.201442384239410.1002/ece3.988 – reference: JepsenJUHagenSBImsRAYoccozNGClimate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansionJ Anim Ecol20087725726410.1111/j.1365-2656.2007.01339.x – reference: ChinellatoFFaccoliMMariniLBattistiADistribution of Norway spruce bark and wood-boring beetles along alpine elevational gradientsAgr For Entomol.20141611111810.1111/afe.12040 – reference: BebberDPRange expanding pests and pathogens in a warming worldAnnu Rev Phytopathol20155333535610.1146/annurev-phyto-080614-1202071:CAS:528:DC%2BC2MXhsFWrsbzP – reference: HunterMDKozlovMVItämiesJPulliainenEBäckJKyröE-MNiemeläPCurrent temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest mothsGlob Chang Biol2014201723173710.1111/gcb.12529 – reference: Thompson LM, Faske TM, Banahene N, Grim D, Agosta SJ, Parry D, Tobin PC, Johnson DM, Grayson KL. Variation in growth and developmental responses to supraoptimal temperatures near latitudinal range limits of gypsy moth Lymantria dispar (L.), an expanding invasive species. Physiol Entomol. 2017; https://doi.org/10.1111/phen. – reference: TudoranM-MMarquerLJönssonAMHistorical experience (1850–1950 and 1961–2014) of insect species responsible for forest damage in Sweden: influence of climate and land management changesFor Ecol Manag201638134735910.1016/j.foreco.2016.09.044 – reference: HofARSvahlinANot erroneous but cautious conclusions about the potential effect of climate change on the geographical distribution of insect pest species in the Swedish boreal forest. Response to Björklund et al. (2015)Scand J For Res20163112812910.1080/02827581.2015.1079644 – reference: FordhamDAMesocosms reveal ecological surprises from climate changePLoS Biol201513e100232310.1371/journal.pbio.10023231:CAS:528:DC%2BC28XnsVSitr4%3D – reference: AdamsASAylwardFOAdamsSMErbilginNAukemaBHCurrieCRSuenGRaffaKFMountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolismAppl Environ Microbiol2013793468347510.1128/AEM.00068-131:CAS:528:DC%2BC3sXotFamtL4%3D – reference: TrânJKYliojaTBillingsRFRégnièreJAyresMPImpact of minimum winter temperatures on the population dynamics of Dendroctonus frontalisEcol Appl20071788289910.1890/06-0512 – reference: HaynesKJAllstadtAJKlimetzekDForest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pestsGlob Chang Biol2014202004201810.1111/gcb.12506 – reference: YoungsteadtEDaleAGTerandoAJDunnRRFrankSDDo cities simulate climate change? A comparison of herbivore response to urban and global warmingGlob Chang Biol2015219710510.1111/gcb.12692 – reference: WorrallJJRehfeldtGEHamannAHoggEHMarchettiSBMichaelianMGrayLKRecent declines of Populus tremuloides in North America linked to climateFor Ecol Manag2013299355110.1016/j.foreco.2012.12.033 – reference: MuirheadJRLeungBVan OverdijkCKellyDWNandakumarKMarchantKRMacIsaacHJModelling local and long-distance dispersal of invasive emerald ash borer, Agrilus planipennis (Coleoptera) in North AmericaDiver Distrib200612717910.1111/j.1366-9516.2006.00218.x – reference: DavidGGiffardBPiouDRoquesAJactelHPotential effects of climate warming on the survivorship of adult Monochamus galloprovincialisAgr For Entomol20171919219910.1111/afe.12200 – reference: MietkiewiczNKulakowskiDRelative importance of climate and mountain pine beetle outbreaks on the occurrence of large wildfires in the western USAEcol Appl2016262523253510.1002/eap.1400 – reference: BjörklundNLindelöwÅSchroederLMErroneous conclusions about current geographical distribution and future expansion of forest insects in northern Sweden: comments on Hof and Svahlin (2015)Scand J for Res20163112612710.1080/02827581.2015.1086018 – reference: OvaskainenOSkorokhodovaSYakovlevaMSukhovAKutenkovAKutenkovaNShcherbakovAMeykeEDel Mar DelgadoMCommunity-level phenological response to climate changeProc Natl Acad Sci U S A2013110134341343910.1073/pnas.1305533110 – reference: AroraVKPengYKurzWAFyfeJCHawkinsBWernerATPotential near-future carbon uptake overcomes losses from a large insect outbreak in British ColumbiaCanada Geophys Res Lett2016432590259810.1002/2015GL0675321:CAS:528:DC%2BC28Xmt12ns7s%3D – reference: VoolmaKHiiesaarKWilliamsIHPloomiAJõgarKCold hardiness in the pre-imaginal stages of the great web-spinning pine-sawfly Acantholyda posticalisAgr For Entomol.20161843243610.1111/afe.12172 – reference: PéréCJactelHKenisMResponse of insect parasitism to elevation depends on host and parasitoid life-history strategiesBiol Lett201392013002810.1098/rsbl.2013.0028 – reference: RobsonJRMConciatoriFTardifJCKnowlesKTree-ring response of jack pine and scots pine to budworm defoliation in Central CanadaFor Ecol Manag2015347839510.1016/j.foreco.2015.03.018 – reference: JepsenJUBiuwMImsRAKapariLSchottTVindstadOPLHagenSBEcosystem impacts of a range expanding forest defoliator at the forest-tundra ecotoneEcosystems20131656157510.1007/s10021-012-9629-9Demonstrates the cascading effects of climate-induced outbreak of forest defoliators on northern ecosystem dynamics. – reference: • Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke, J.A., Kolb, T.E. Responses of tree-killing bark beetles to a changing climate. In: Bjorkman C, Niemela P. Climate change and insect pests. 2015. CAB international; pp. 173-201. An overview of relationships between climate change and bark beetle outbreaks. – reference: MyersJHSarfrazRMImpacts of insect herbivores on plant populationsAnnu Rev Entomol20176220723010.1146/annurev-ento-010715-0238261:CAS:528:DC%2BC28XhslyksLbJ – reference: KarlsenSRJepsenJUOdlandAImsRAElvebakkAOutbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communitiesOecologia201317385987010.1007/s00442-013-2648-1 – reference: BaierPPennerstorferJSchopfAPHENIPS—a comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestationFor Ecol Manag200724917118610.1016/j.foreco.2007.05.020 – reference: PriceDTAlfaroRIBrownKJFlanniganMDFlemingRAHoggEHGirardinMPLakustaTJohnstonMMcKenneyDWPedlarJHStrattonTSturrockRNThompsonIDTrofymowJAVenierLAAnticipating the consequences of climate change for Canada’s boreal forest ecosystemsEnviron Rev20132132236510.1139/er-2013-0042 – reference: WilliamsCAGuHMacLeanRMasekJGCollatzGJDisturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects, and droughtsGlob Planet Chang2016143668010.1016/j.gloplacha.2016.06.002 – reference: TurchinPTaylorADReeveJDDynamical role of predators in population cycles of a forest insect: an experimental testScience19992851068107110.1126/science.285.5430.10681:CAS:528:DyaK1MXlt1Gnu70%3D – reference: KlapwijkMJCsókaGHirkaABjörkmanCForest insects and climate change: long-term trends in herbivore damageEcol Evol.201334183419610.1002/ece3.717 – reference: RoquesAAuger-RozenbergM-ABlackburnTMGarnasJPyšekPRabitschWRichardsonDMWingfieldMJLiebholdAMDuncanRPTemporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 yearsBiol Invas20161890792010.1007/s10530-016-1080-y – reference: KozlovMVZverevVZverevaELCombined effects of environmental disturbance and climate warming on insect herbivory in mountain birch in subarctic forests: results of 26-year monitoringSci Tot Environ2017601–60280281110.1016/j.scitotenv.2017.05.2301:CAS:528:DC%2BC2sXpt12lt7c%3D – reference: BarredoJIStronaGde RigoDCaudulloGStancanelliGSan-Miguel-AyanzJAssessing the potential distribution of insect pests: case studies on large pine weevil (Hylobius abietis L) and horse-chestnut leaf miner (Cameraria ohridella) under present and future climate conditions in European forestsEPPO Bulletin20154527328110.1111/epp.12208 – reference: BentzBJDuncanJPPowellJAElevational shifts in thermal suitability for mountain pine beetle population growth in a changing climateForestry20168927128310.1093/forestry/cpv054 – reference: BuffoEBattistiAStastnyMLarssonSTemperature as a predictor of survival of the pine processionary moth in the Italian alpsAgric For Entomol20079657210.1111/j.1461-9563.2006.00321.x – reference: EFSA and Panel on Plant HealthRisk assessment of the oriental chestnut gall wasp, Dryocosmus kuriphilus for the EU territory on request from the European CommissionEFSA J201081114 – reference: LoganJAMacfarlaneWWWillcoxLWhitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the greater Yellowstone ecosystemEcol Appl20102089590210.1890/09-0655.1 – reference: KivimäenpääMGhimireRPSutinenSHäikiöEKasurinenAHolopainenTHolopainenJKIncreases in volatile organic compound emissions of scots pine in response to elevated ozone and warming are modified by herbivory and soil nitrogen availabilityEur J For Res201613534336010.1007/s10342-016-0939-x1:CAS:528:DC%2BC28XitFCjtrg%3D – reference: LeppanenCSimberloffDImplications of early production in an invasive forest pestAgr For Entomol.20171921722410.1111/afe.12198 – reference: SaulnierMRoquesAGuibalFRozenbergPSaraccoGCoronaCEdouardJ-LSpatiotemporal heterogeneity of larch budmoth outbreaks in the French Alps over the last 500 yearsCan J For Res20174766768010.1139/cjfr-2016-0211 – reference: JanesJKLiYKeelingCIYuenMMSBooneCKCookeJEKBohlmannJHuberDPWMurrayBWColtmanDWSperlingFAHHow the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian rocky mountainsMol Biol Evol2014311803181510.1093/molbev/msu1351:CAS:528:DC%2BC2cXhtFShs7vI – reference: WainhouseDInwardDJGMorganGModelling geographical variation in voltinism of Hylobius abietis under climate change and implications for managementAgr For Entomol.20141613614610.1111/afe.12043 – reference: AndereggWRLHickeJAFisherRAAllenCDAukemaJBentzBHoodSLichsteinJWMacaladyAKMcdowellNPanYRaffaKSalaAShawJDStephensonNLTagueCZeppelMTree mortality from drought, insects, and their interactions in a changing climateNew Phytol201520867468310.1111/nph.13477 – reference: JamiesonMASchwartzbergEGRaffaKFReichPBLindrothRLExperimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivoreGlob Chang Biol2015212698271010.1111/gcb.12842 – reference: GrayDRQuantifying the sources of epistemic uncertainty in model predictions of insect disturbances in an uncertain climateAnn For Sci2017744810.1007/s13595-017-0645-y – reference: ChungHMuraokaHNakamuraMHanSMullerOSonYExperimental warming studies on tree species and forest ecosystems: a literature reviewJ Plant Res201312644746010.1007/s10265-013-0565-3 – reference: BattistiAStastnyMNethererSRobinetCSchopfARoquesALarssonSExpansion of geographic range in pine processionary moth caused by increasing winter temperaturesEcol Appl2005152084209610.1890/04-1903 – reference: SidderAMKumarSLaituriMSiboldJSUsing spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetleEcosphere20167e0139610.1002/ecs2.1396 – reference: SachetJ-MPoncetBRoquesADesprésLAdaptive radiation through phenological shift: the importance of the temporal niche in species diversificationEcol Entomol.200934818910.1111/j.1365-2311.2008.01045.x – reference: WilliamsDWLiebholdAMClimate change and the outbreak ranges of two north American bark beetlesAgric For Entomol20024879910.1046/j.1461-9563.2002.00124.x – reference: Christensen JH, Hewitson B, Busuioc A et al. Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. Editors. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge; 2007. pp. 847–940. – reference: GherlendaANMooreBDHaighAMJohnsonSNRieglerMInsect herbivory in a mature eucalyptus woodland canopy depends on leaf phenology but not CO2 enrichmentBMC Ecol2016164710.1186/s12898-016-0102-z – reference: ZverevaELHunterMDZverevVKozlovMVFactors affecting population dynamics of leaf beetles in a subarctic region: the interplay between climate warming and pollution declineSci Tot Environ2016566-5671277128810.1016/j.scitotenv.2016.05.1871:CAS:528:DC%2BC28XhtlSlsrrM – reference: EsperJBüntgenUFrankDCNievergeltDLiebholdA1200 years of regular outbreaks in alpine insectsProc Royal Soc Biol Sci200727467167910.1098/rspb.2006.0191 – reference: ValtonenAMollemanFChapmanCACareyJRAyresMPRoininenHTropical phenology: bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblageEcosphere.2013412810.1890/ES12-00338.1 – reference: • Battisti A, Larsson S. Climate change and insect pest distribution range. In: Bjorkman C and Niemela P. Editors. Climate change and insect pests. CAB international; 2015. p. 1–15. Provides conceptual framework for the study of range expansion of insects in relation to climate change. – reference: Flower A, Gavin DG, Heyerdahl EK, Parsons RA, Cohn GM. Western spruce budworm outbreaks did not increase fire risk over the last three centuries: a dendrochronological analysis of inter-disturbance synergism. PLoS One 2014; 9. – reference: BattistiAPehKS-HCorlettRTBergeronYInsects in forest ecosystemsRoutledge handbook of forest ecology2015RoutledgeOxon215225 – reference: RobinetCImbertCERousseletJSauvardDGarciaJGoussardFRoquesAHuman-mediated long-distance jumps of the pine processionary moth in EuropeBiol Invas201214155710.1007/s10530-011-9979-9 – volume: 47 start-page: 667 year: 2017 ident: 75_CR93 publication-title: Can J For Res doi: 10.1139/cjfr-2016-0211 – volume: 8 start-page: 7 year: 2015 ident: 75_CR143 publication-title: J Asia-Pac Biodivers doi: 10.1016/j.japb.2015.01.001 – volume: 175 start-page: 1041 year: 2014 ident: 75_CR37 publication-title: Oecologia doi: 10.1007/s00442-014-2960-4 – volume: 58 start-page: 501 year: 2008 ident: 75_CR10 publication-title: Bioscience doi: 10.1641/B580607 – volume: 39 start-page: 323 year: 1999 ident: 75_CR30 publication-title: Amer Zool doi: 10.1093/icb/39.2.323 – volume: 14 start-page: 348 year: 2012 ident: 75_CR100 publication-title: Agr For Entomol. doi: 10.1111/j.1461-9563.2012.00575.x – volume: 16 start-page: 136 year: 2014 ident: 75_CR114 publication-title: Agr For Entomol. doi: 10.1111/afe.12043 – volume: 343 start-page: 73 year: 2015 ident: 75_CR142 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2015.01.028 – volume: 349 start-page: 823 year: 2015 ident: 75_CR8 publication-title: Science doi: 10.1126/science.aaa9933 – volume: 7 start-page: 553 year: 2014 ident: 75_CR138 publication-title: Insect Conserv Diver doi: 10.1111/icad.12078 – volume: 16 start-page: 561 year: 2013 ident: 75_CR25 publication-title: Ecosystems doi: 10.1007/s10021-012-9629-9 – volume: 76 start-page: 395 year: 2017 ident: 75_CR5 publication-title: Nat Clim Chang doi: 10.1038/nclimate3303 – volume: 566-567 start-page: 1277 year: 2016 ident: 75_CR81 publication-title: Sci Tot Environ doi: 10.1016/j.scitotenv.2016.05.187 – volume: 287 start-page: 67 year: 2013 ident: 75_CR88 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2012.09.006 – volume: 292 start-page: 1 year: 2013 ident: 75_CR97 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2012.12.018 – volume: 118 start-page: 1121 year: 2009 ident: 75_CR107 publication-title: Oikos doi: 10.1111/j.1600-0706.2009.17558.x – volume: 122 start-page: 930 year: 2017 ident: 75_CR13 publication-title: J Geophys Res Biogeosci doi: 10.1002/2016JG003622 – volume: 41 start-page: 653 year: 2016 ident: 75_CR33 publication-title: Ecol Entomol. doi: 10.1111/een.12324 – volume: 9 start-page: 65 year: 2007 ident: 75_CR72 publication-title: Agric For Entomol doi: 10.1111/j.1461-9563.2006.00321.x – volume: 249 start-page: 171 year: 2007 ident: 75_CR99 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2007.05.020 – volume: 20 start-page: 2004 year: 2014 ident: 75_CR26 publication-title: Glob Chang Biol doi: 10.1111/gcb.12506 – volume: 52 start-page: 37 year: 2007 ident: 75_CR108 publication-title: Annu Rev Entomol doi: 10.1146/annurev.ento.52.110405.091418 – volume: 21 start-page: 97 year: 2015 ident: 75_CR89 publication-title: Glob Chang Biol doi: 10.1111/gcb.12692 – volume: 79 start-page: 3468 year: 2013 ident: 75_CR58 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00068-13 – volume: 22 start-page: 1595 year: 2016 ident: 75_CR70 publication-title: Glob Chang Biol doi: 10.1111/gcb.13142 – volume: 16 start-page: 111 year: 2014 ident: 75_CR141 publication-title: Agr For Entomol. doi: 10.1111/afe.12040 – volume: 14 start-page: 1557 year: 2012 ident: 75_CR50 publication-title: Biol Invas doi: 10.1007/s10530-011-9979-9 – volume: 35 start-page: 211 year: 2012 ident: 75_CR111 publication-title: Ecography doi: 10.1111/j.1600-0587.2011.06847.x – ident: 75_CR96 doi: 10.1371/journal.pone.0176269 – volume: 60 start-page: 602 year: 2010 ident: 75_CR16 publication-title: Bioscience doi: 10.1525/bio.2010.60.8.6 – volume: 53 start-page: 335 year: 2015 ident: 75_CR21 publication-title: Annu Rev Phytopathol doi: 10.1146/annurev-phyto-080614-120207 – ident: 75_CR1 doi: 10.1017/CBO9781107415379.004 – volume: 22 start-page: 3632 year: 2016 ident: 75_CR104 publication-title: Glob Chang Biol doi: 10.1111/gcb.13334 – volume: 11 start-page: 321 year: 2017 ident: 75_CR140 publication-title: Front Earth Sci doi: 10.1007/s11707-016-0582-3 – volume: 31 start-page: 29 year: 2016 ident: 75_CR73 publication-title: Scand J For Res doi: 10.1080/02827581.2015.1052751 – volume: 39 start-page: 179 year: 1994 ident: 75_CR115 publication-title: Annu Rev Entomol doi: 10.1146/annurev.en.39.010194.001143 – volume: 3 start-page: 2783 year: 2013 ident: 75_CR121 publication-title: Ecol Evol doi: 10.1002/ece3.665 – volume: 43 start-page: 2590 year: 2016 ident: 75_CR130 publication-title: Canada Geophys Res Lett doi: 10.1002/2015GL067532 – volume: 89 start-page: 271 year: 2016 ident: 75_CR62 publication-title: Forestry doi: 10.1093/forestry/cpv054 – volume: 19 start-page: 192 year: 2017 ident: 75_CR98 publication-title: Agr For Entomol doi: 10.1111/afe.12200 – volume: 362 start-page: 241 year: 2016 ident: 75_CR39 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2015.11.045 – start-page: 215 volume-title: Routledge handbook of forest ecology year: 2015 ident: 75_CR132 – volume: 31 start-page: 1803 year: 2014 ident: 75_CR60 publication-title: Mol Biol Evol doi: 10.1093/molbev/msu135 – volume: 41 start-page: 1948 year: 2011 ident: 75_CR17 publication-title: Can J For Res doi: 10.1139/x11-134 – volume: 121 start-page: 701 year: 2013 ident: 75_CR92 publication-title: Climat Chang doi: 10.1007/s10584-013-0966-2 – volume: 7 start-page: 967 year: 2004 ident: 75_CR19 publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2004.00659.x – volume: 54 start-page: 28 year: 2017 ident: 75_CR149 publication-title: J Appl Ecol doi: 10.1111/1365-2664.12644 – ident: 75_CR3 – volume: 19 start-page: 891 year: 2015 ident: 75_CR125 publication-title: J Insect Conserv doi: 10.1007/s10841-015-9806-1 – volume: 27 start-page: 780 year: 2016 ident: 75_CR127 publication-title: J Veget Sci doi: 10.1111/jvs.12410 – volume: 268 start-page: 289 year: 2001 ident: 75_CR83 publication-title: Proc Royal Soc Lond B – Biol Sci doi: 10.1098/rspb.2000.1363 – volume: 16 start-page: 329 year: 2014 ident: 75_CR76 publication-title: Biol Invas. doi: 10.1007/s10530-013-0521-0 – volume: 20 start-page: 895 year: 2010 ident: 75_CR134 publication-title: Ecol Appl doi: 10.1890/09-0655.1 – volume: 41 start-page: 174 year: 2015 ident: 75_CR24 publication-title: Paleobiol doi: 10.1017/pab.2014.11 – ident: 75_CR91 doi: 10.1007/978-94-017-9340-7 – volume: 42 start-page: 200 year: 2017 ident: 75_CR112 publication-title: Phys Entomol doi: 10.1111/phen.12200 – volume: 47 start-page: 1 year: 2013 ident: 75_CR122 publication-title: Silva Fennica doi: 10.14214/sf.964 – ident: 75_CR32 doi: 10.1016/j.foreco.2016.04.051 – volume: 143 start-page: 66 year: 2016 ident: 75_CR14 publication-title: Glob Planet Chang doi: 10.1016/j.gloplacha.2016.06.002 – volume: 126 start-page: 447 year: 2013 ident: 75_CR36 publication-title: J Plant Res doi: 10.1007/s10265-013-0565-3 – volume: 62 start-page: 207 year: 2017 ident: 75_CR35 publication-title: Annu Rev Entomol doi: 10.1146/annurev-ento-010715-023826 – volume: 299 start-page: 35 year: 2013 ident: 75_CR126 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2012.12.033 – volume: 381 start-page: 347 year: 2016 ident: 75_CR150 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2016.09.044 – volume: 31 start-page: 126 year: 2016 ident: 75_CR74 publication-title: Scand J for Res doi: 10.1080/02827581.2015.1086018 – volume: 47 start-page: 160 year: 2001 ident: 75_CR110 publication-title: Am Entomol doi: 10.1093/ae/47.3.160 – volume: 9 start-page: 711 year: 2016 ident: 75_CR124 publication-title: Contemp Prob Ecol doi: 10.1134/S199542551606007X – volume: 19 start-page: 217 year: 2017 ident: 75_CR31 publication-title: Agr For Entomol. doi: 10.1111/afe.12198 – volume: 32 start-page: 95 year: 2017 ident: 75_CR137 publication-title: Scand J For Res doi: 10.1080/02827581.2016.1195867 – volume: 4 start-page: 87 year: 2002 ident: 75_CR9 publication-title: Agric For Entomol doi: 10.1046/j.1461-9563.2002.00124.x – volume: 28 start-page: 380 year: 2003 ident: 75_CR109 publication-title: Ecol Entomol. doi: 10.1046/j.1365-2311.2003.00509.x – volume: 13 start-page: 5277 year: 2016 ident: 75_CR131 publication-title: Biogeosciences doi: 10.5194/bg-13-5277-2016 – ident: 75_CR41 doi: 10.1079/9781780643786.0001 – volume: 173 start-page: 859 year: 2013 ident: 75_CR123 publication-title: Oecologia doi: 10.1007/s00442-013-2648-1 – volume: 20 start-page: 39 year: 2017 ident: 75_CR34 publication-title: Curr Opin Insect Sci doi: 10.1016/j.cois.2017.03.006 – start-page: 533 volume-title: Bark beetles year: 2015 ident: 75_CR63 doi: 10.1016/B978-0-12-417156-5.00013-7 – volume: 8 start-page: 335 year: 2002 ident: 75_CR66 publication-title: Diver Distrib. doi: 10.1046/j.1472-4642.2002.00159.x – volume: 21 start-page: 2698 year: 2015 ident: 75_CR38 publication-title: Glob Chang Biol doi: 10.1111/gcb.12842 – volume: 102 start-page: 17384 year: 2005 ident: 75_CR106 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0508839102 – volume: 110 start-page: 13434 year: 2013 ident: 75_CR136 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1305533110 – volume: 14 start-page: 1571 year: 2012 ident: 75_CR44 publication-title: Biol Invas. doi: 10.1007/s10530-010-9918-1 – ident: 75_CR48 doi: 10.1111/phen – volume: 172 start-page: 141 year: 2013 ident: 75_CR12 publication-title: Oecologia doi: 10.1007/s00442-012-2474-x – volume: 274 start-page: 671 year: 2007 ident: 75_CR51 publication-title: Proc Royal Soc Biol Sci doi: 10.1098/rspb.2006.0191 – volume: 17 start-page: 882 year: 2007 ident: 75_CR55 publication-title: Ecol Appl doi: 10.1890/06-0512 – volume: 45 start-page: 273 year: 2015 ident: 75_CR65 publication-title: EPPO Bulletin doi: 10.1111/epp.12208 – volume: 110 start-page: 2193 year: 2013 ident: 75_CR59 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1216666110 – volume: 74 start-page: 48 year: 2017 ident: 75_CR45 publication-title: Ann For Sci doi: 10.1007/s13595-017-0645-y – volume: 347 start-page: 83 year: 2015 ident: 75_CR80 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2015.03.018 – volume: 20 start-page: 1723 year: 2014 ident: 75_CR135 publication-title: Glob Chang Biol doi: 10.1111/gcb.12529 – volume: 115 start-page: 327 year: 2012 ident: 75_CR113 publication-title: Climat Chang. doi: 10.1007/s10584-012-0463-z – volume: 4 start-page: 1 year: 2013 ident: 75_CR148 publication-title: Ecosphere. doi: 10.1890/ES12-00338.1 – ident: 75_CR43 – volume: 60 start-page: 434 year: 2014 ident: 75_CR61 publication-title: For Sci doi: 10.5849/forsci.13-056 – volume: 95 start-page: 9 year: 2014 ident: 75_CR139 publication-title: Ecology doi: 10.1890/13-0760.1 – volume: 36 start-page: 1138 year: 2013 ident: 75_CR101 publication-title: Ecography doi: 10.1111/j.1600-0587.2013.00272.x – volume: 18 start-page: 907 year: 2016 ident: 75_CR78 publication-title: Biol Invas doi: 10.1007/s10530-016-1080-y – volume: 12 start-page: 71 year: 2006 ident: 75_CR53 publication-title: Diver Distrib doi: 10.1111/j.1366-9516.2006.00218.x – ident: 75_CR128 doi: 10.1088/1748-9326/11/4/045008 – volume: 285 start-page: 1068 year: 1999 ident: 75_CR146 publication-title: Science doi: 10.1126/science.285.5430.1068 – volume: 9 start-page: 526 year: 2008 ident: 75_CR133 publication-title: Ecol Appl doi: 10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2 – volume: 19 start-page: 1163 year: 2015 ident: 75_CR145 publication-title: J Insect Conserv doi: 10.1007/s10841-015-9831-0 – volume: 26 start-page: 1133 year: 1999 ident: 75_CR54 publication-title: J Biogeogr doi: 10.1046/j.1365-2699.1999.00363.x – volume: 18 start-page: 432 year: 2016 ident: 75_CR85 publication-title: Agr For Entomol. doi: 10.1111/afe.12172 – volume: 159 start-page: 527 year: 2009 ident: 75_CR117 publication-title: Oecologia doi: 10.1007/s00442-008-1233-5 – ident: 75_CR2 – volume: 44 start-page: 565 year: 2013 ident: 75_CR11 publication-title: Annu Rev Ecol Evol Syst doi: 10.1146/annurev-ecolsys-110512-135858 – volume: 3 start-page: 4183 year: 2013 ident: 75_CR27 publication-title: Ecol Evol. doi: 10.1002/ece3.717 – volume: 77 start-page: 257 year: 2008 ident: 75_CR46 publication-title: J Anim Ecol doi: 10.1111/j.1365-2656.2007.01339.x – volume: 15 start-page: 2084 year: 2005 ident: 75_CR49 publication-title: Ecol Appl doi: 10.1890/04-1903 – volume: 21 start-page: 322 year: 2013 ident: 75_CR4 publication-title: Environ Rev doi: 10.1139/er-2013-0042 – volume: 396 start-page: 11 year: 2017 ident: 75_CR71 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2017.04.008 – ident: 75_CR77 doi: 10.1007/s10144-017-0589-y – volume: 208 start-page: 674 year: 2015 ident: 75_CR7 publication-title: New Phytol doi: 10.1111/nph.13477 – volume: 16 start-page: 460 year: 2007 ident: 75_CR42 publication-title: Glob Ecol Biogeog doi: 10.1111/j.1466-8238.2006.00302.x – volume: 83 start-page: 441 year: 2013 ident: 75_CR20 publication-title: Ecol Monogr doi: 10.1890/13-0160.1 – volume: 27 start-page: 532 year: 2017 ident: 75_CR120 publication-title: Canada Ecol Appl doi: 10.1002/eap.1463 – volume: 135 start-page: 343 year: 2016 ident: 75_CR84 publication-title: Eur J For Res doi: 10.1007/s10342-016-0939-x – volume: 37 start-page: 212 year: 2012 ident: 75_CR47 publication-title: Ecol Entomol. doi: 10.1111/j.1365-2311.2012.01358.x – volume: 452 start-page: 987 year: 2008 ident: 75_CR6 publication-title: Nature doi: 10.1038/nature06777 – volume: 8 start-page: 329 year: 2014 ident: 75_CR87 publication-title: Arthropod-Plant Interact – volume: 16 start-page: 47 year: 2016 ident: 75_CR105 publication-title: BMC Ecol doi: 10.1186/s12898-016-0102-z – volume: 601–602 start-page: 802 year: 2017 ident: 75_CR102 publication-title: Sci Tot Environ doi: 10.1016/j.scitotenv.2017.05.230 – volume: 39 start-page: 1112 year: 2012 ident: 75_CR56 publication-title: J Biogeogr doi: 10.1111/j.1365-2699.2011.02673.x – volume: 15 start-page: 212 year: 2013 ident: 75_CR64 publication-title: Agr For Entomol. doi: 10.1111/afe.12007 – volume: 71 start-page: 149 year: 2014 ident: 75_CR22 publication-title: Ann For Sci doi: 10.1007/s13595-013-0287-7 – volume: 42 start-page: 1264 year: 2012 ident: 75_CR28 publication-title: Can J For Res doi: 10.1139/x2012-069 – volume: 38 start-page: 201 year: 2013 ident: 75_CR90 publication-title: Ecol Entomol doi: 10.1111/een.12005 – volume: 26 start-page: 2523 year: 2016 ident: 75_CR129 publication-title: Ecol Appl doi: 10.1002/eap.1400 – volume: 22 start-page: 472 year: 2012 ident: 75_CR69 publication-title: Ecol Appl doi: 10.1890/11-0009.1 – volume: 8 start-page: 1 year: 2010 ident: 75_CR67 publication-title: EFSA J – ident: 75_CR86 doi: 10.1371/journal.pone.0114282 – volume: 96 start-page: 1480 year: 2015 ident: 75_CR18 publication-title: Ecology doi: 10.1890/13-2366.1 – volume: 335 start-page: 40 year: 2013 ident: 75_CR147 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2013.06.012 – volume: 22 start-page: 2329 year: 2016 ident: 75_CR29 publication-title: Glob Chang Biol doi: 10.1111/gcb.13160 – volume: 13 start-page: e1002323 year: 2015 ident: 75_CR40 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002323 – volume: 9 start-page: 20130028 year: 2013 ident: 75_CR144 publication-title: Biol Lett doi: 10.1098/rsbl.2013.0028 – volume: 7 start-page: e01396 year: 2016 ident: 75_CR57 publication-title: Ecosphere doi: 10.1002/ecs2.1396 – volume: 17 start-page: 48 year: 2015 ident: 75_CR103 publication-title: Agr For Entomol. doi: 10.1111/afe.12079 – ident: 75_CR118 doi: 10.1139/cjfr-2014-0385 – volume: 12 start-page: 662 year: 2006 ident: 75_CR23 publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2006.01124.x – ident: 75_CR82 doi: 10.1111/een.12400 – volume: 86 start-page: 590 year: 2017 ident: 75_CR94 publication-title: J Anim Ecol doi: 10.1111/1365-2656.12647 – volume: 13 start-page: 541 year: 2008 ident: 75_CR68 publication-title: Mitig Adapt Strat Glob Change doi: 10.1007/s11027-007-9127-0 – volume: 31 start-page: 128 year: 2016 ident: 75_CR75 publication-title: Scand J For Res doi: 10.1080/02827581.2015.1079644 – volume: 213 start-page: 53 year: 2015 ident: 75_CR79 publication-title: Canada Agr For Meteorol doi: 10.1016/j.agrformet.2015.06.014 – volume: 34 start-page: 81 year: 2009 ident: 75_CR116 publication-title: Ecol Entomol. doi: 10.1111/j.1365-2311.2008.01045.x – volume: 4 start-page: 2384 year: 2014 ident: 75_CR119 publication-title: Ecol Evol. doi: 10.1002/ece3.988 – volume: 107 start-page: 20576 year: 2010 ident: 75_CR52 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1010270107 – volume: 178–179 start-page: 120 year: 2013 ident: 75_CR95 publication-title: Agr For Meteorol doi: 10.1016/j.agrformet.2013.04.015 – ident: 75_CR15 doi: 10.1079/9781780643786.0173 |
| SSID | ssj0002710234 |
| Score | 2.5274467 |
| SecondaryResourceType | review_article |
| Snippet | Purpose of Review
Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this... Purpose of ReviewClimate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this... PURPOSE OF REVIEW: Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this... Purpose of Review Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013-2017) on this... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35 |
| SubjectTerms | Abundance Bark bark beetles Beetles climate Climate change Climate effects Climate models defoliating insects Earth and Environmental Science Ecology Ecosystem assessment Environment Environmental changes Environmental impact Environmental Management Environmental Sciences Forest ecosystems Forest Entomology (E Brockerhoff forest insects Forestry Forestry Management Forests Global Changes Guilds insect communities Insects Nature Conservation Outbreaks Pest outbreaks Pests Range extension Section Editor Species Sustainable Development temperature Topical Collection on Forest Entomology Trophic relationships winter |
| Title | Forest Insects and Climate Change |
| URI | https://link.springer.com/article/10.1007/s40725-018-0075-6 https://www.proquest.com/docview/2039940105 https://www.proquest.com/docview/2084051490 https://hal.inrae.fr/hal-02629304 |
| Volume | 4 |
| WOSCitedRecordID | wos000432549800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2198-6436 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710234 issn: 2198-6436 databaseCode: RSV dateStart: 20150301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB7c9cAXj1WxXlTxSSmkTds0jyLKCiLixb6VnLggVfYC_72ZblsPVNC3kk5KmGQ632QugENBtMwyLYMkNc5AMTYLhNRpYBVNrGLOJJG6bDbBrq6yXo9fV3ncwzravXZJln_qJtkNS3lhoFkWoJ4L0hbMOm2XoTTe3D40FysR6kwa1x7M72Z-0kGtR4yA_AAvv3hES0VzvvyvJa7AUoUr_ZPpQViFGVN0YP6srEn92oEFbMGJfd3WYH_66F8UQ4zk8EWh_dOnvkOuxp_mGqzD_fnZ3Wk3qBolBMop2FHAGQ-1FMxhmVDxxPIwUowYK8JYkkRxqphVXBFObJoaw6xRTBhqIy1C9NTSDWgXz4XZBF_rhDGiTSisjGNLpdGEUp1YSYVME-oBqVmXq6qKODazeMqb-sclE3LHhByZkKceHDVTXqYlNH4jPnD70dBh8evuyWWOY85adNiExJPQg516u_JK5IZ5RBzWirHhpwf7zWsnLOgBEYV5HiONs2cdROTEg-N6C98_8eOqtv5EvQ2LUXkG8K5mB9qjwdjswpyajPrDwV55Wt8Akw7iYg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tHYO9MCggAh1LJ56GIjlxEseP09SqFV2FoEx9s_wpJk0partJ_Pf40iQbiE1ib5Fzjqy7c-53vvMdwEdJjCoKo6Ist95Bsa6IpDJ55DTNnGbeJVGmajbBZrNiseBf6nvc6ybbvQlJVn_q9rIblvLCRLMiQjsX5R3YTb3Bwjy-r98u2oOVBG0mTZsI5r9m_mGDOj8wA_IOvPwrIloZmtHBo5b4Ap7XuDI83SrCS9ixZQ_2hlVN6l89eIotOLGv2ysYbB_DSbnGTI5QliY8u7r0yNWG27sGr-H7aDg_G0d1o4RIewO7iTjjsVGSeSwTa545HieaEetknCqSaU41c5prwonLc2uZs5pJS11iZIyRWvoGuuWytG8hNCZjjBgbS6fS1FFlDaHUZE5RqfKMBkAa1gldVxHHZhZXoq1_XDFBeCYIZILIAzhpp_zcltB4iPjYy6Olw-LX49OpwDHvLXpsQtKbOIB-Iy5Rb7m1SIjHWik2_Axg0L72mwUjILK0y2uk8f6sh4icBPCpEeHtJ-5d1bv_oj6CZ-P5-VRMJ7PP72E_qfQBz2360N2sru0hPNE3m8v16kOlub8BN9TlRg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-UwEB68rOKL63rBqrtW8Ukppk3bNI-iHpSVg7AqvoVcUZB6OOco-O_N9OYqKohvpZ2UMEmYbzKXD2BHEqOKwqgoy613UKwrIqlMHjlNM6eZd0mUqcgmWL9fXF_z84bndNRmu7chybqmAbs0leP9gXH7XeEbtvXCpLMiQpsX5ZMwnSJnELrr_666S5YE7SdN22jmeyNf2aPJG8yG_A9qvomOVkan9_Pb012A-QZvhgf1BvkFE7ZchJnjqlf10yLMIjUn8r0twVb9GJ6WI8zwCGVpwsO7W49obVjXICzDZe_44vAkaggUIu0N7zjijMdGSeYxTqx55nicaEask3GqSKY51cxprgknLs-tZc5qJi11iZExRnDpCkyV96VdhdCYjDFibCydSlNHlTWEUpM5RaXKMxoAadUodNNdHEku7kTXF7lSgvBKEKgEkQew2w0Z1K01PhPe9mvTyWFT7JODM4HvvBfpMQtJH-MANtqlE81RHImEeAyWIhFoAFvdZ3-IMDIiS3v_gDLez_XQkZMA9trlfPnFh7Na-5L0JsyeH_XE2Wn_7zrMJdV2wOucDZgaDx_sb_ihH8e3o-GfahM_A2xf7io |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forest+Insects+and+Climate+Change&rft.jtitle=Current+forestry+reports&rft.au=Pureswaran%2C+Deepa+S.&rft.au=Roques%2C+Alain&rft.au=Battisti%2C+Andrea&rft.date=2018-06-01&rft.pub=Springer+International+Publishing&rft.eissn=2198-6436&rft.volume=4&rft.issue=2&rft.spage=35&rft.epage=50&rft_id=info:doi/10.1007%2Fs40725-018-0075-6&rft.externalDocID=10_1007_s40725_018_0075_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6436&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6436&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6436&client=summon |