Forest Insects and Climate Change

Purpose of Review Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this subject including previous reviews on the topic. We provide a comprehensive discussion of the subject, with special attention to insect range ex...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Current forestry reports Ročník 4; číslo 2; s. 35 - 50
Hlavní autoři: Pureswaran, Deepa S., Roques, Alain, Battisti, Andrea
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.06.2018
Springer Nature B.V
Springer
Témata:
ISSN:2198-6436, 2198-6436
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose of Review Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this subject including previous reviews on the topic. We provide a comprehensive discussion of the subject, with special attention to insect range expansion, insect abundance, impacts on forest ecosystems, and effects on forest insect communities. We considered forest insects according to their major guilds and biomes. Recent Findings Effects of climate change on forest insects are demonstrated for a number of species and guilds, although generalizations of results available so far are difficult because of species-specific responses to climate change. In addition, disentangling direct and indirect effects of climate change is complex due to the large number of variables affected. Modeling based on climate projections is useful when combined with mechanistic explanations. Summary Expansion of either the true range or the outbreak range is observed in several model species/groups of major insect guilds in boreal and temperate biomes. Mechanistic explanations are provided for a few species and are mainly based on increase in winter temperatures. In relation to insect abundance, climate change can either promote outbreaks or disrupt trophic interactions and decrease the severity of outbreaks. There is good evidence that some recent outbreaks of bark beetles and defoliating insects are influenced by climate change and are having a large impact on ecosystems as well as on communities of forest insects.
AbstractList Purpose of Review Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this subject including previous reviews on the topic. We provide a comprehensive discussion of the subject, with special attention to insect range expansion, insect abundance, impacts on forest ecosystems, and effects on forest insect communities. We considered forest insects according to their major guilds and biomes. Recent Findings Effects of climate change on forest insects are demonstrated for a number of species and guilds, although generalizations of results available so far are difficult because of species-specific responses to climate change. In addition, disentangling direct and indirect effects of climate change is complex due to the large number of variables affected. Modeling based on climate projections is useful when combined with mechanistic explanations. Summary Expansion of either the true range or the outbreak range is observed in several model species/groups of major insect guilds in boreal and temperate biomes. Mechanistic explanations are provided for a few species and are mainly based on increase in winter temperatures. In relation to insect abundance, climate change can either promote outbreaks or disrupt trophic interactions and decrease the severity of outbreaks. There is good evidence that some recent outbreaks of bark beetles and defoliating insects are influenced by climate change and are having a large impact on ecosystems as well as on communities of forest insects.
Purpose of Review Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013-2017) on this subject including previous reviews on the topic. We provide a comprehensive discussion of the subject, with special attention to insect range expansion, insect abundance, impacts on forest ecosystems, and effects on forest insect communities. We considered forest insects according to their major guilds and biomes. Recent Findings Effects of climate change on forest insects are demonstrated for a number of species and guilds, although generalizations of results available so far are difficult because of species-specific responses to climate change. In addition, disentangling direct and indirect effects of climate change is complex due to the large number of variables affected. Modeling based on climate projections is useful when combined with mechanistic explanations. Summary Expansion of either the true range or the outbreak range is observed in several model species/groups of major insect guilds in boreal and temperate biomes. Mechanistic explanations are provided for a few species and are mainly based on increase in winter temperatures. In relation to insect abundance, climate change can either promote outbreaks or disrupt trophic interactions and decrease the severity of outbreaks. There is good evidence that some recent outbreaks of bark beetles and defoliating insects are influenced by climate change and are having a large impact on ecosystems as well as on communities of forest insects.
PURPOSE OF REVIEW: Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this subject including previous reviews on the topic. We provide a comprehensive discussion of the subject, with special attention to insect range expansion, insect abundance, impacts on forest ecosystems, and effects on forest insect communities. We considered forest insects according to their major guilds and biomes. RECENT FINDINGS: Effects of climate change on forest insects are demonstrated for a number of species and guilds, although generalizations of results available so far are difficult because of species-specific responses to climate change. In addition, disentangling direct and indirect effects of climate change is complex due to the large number of variables affected. Modeling based on climate projections is useful when combined with mechanistic explanations. Expansion of either the true range or the outbreak range is observed in several model species/groups of major insect guilds in boreal and temperate biomes. Mechanistic explanations are provided for a few species and are mainly based on increase in winter temperatures. In relation to insect abundance, climate change can either promote outbreaks or disrupt trophic interactions and decrease the severity of outbreaks. There is good evidence that some recent outbreaks of bark beetles and defoliating insects are influenced by climate change and are having a large impact on ecosystems as well as on communities of forest insects.
Purpose of ReviewClimate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this subject including previous reviews on the topic. We provide a comprehensive discussion of the subject, with special attention to insect range expansion, insect abundance, impacts on forest ecosystems, and effects on forest insect communities. We considered forest insects according to their major guilds and biomes.Recent FindingsEffects of climate change on forest insects are demonstrated for a number of species and guilds, although generalizations of results available so far are difficult because of species-specific responses to climate change. In addition, disentangling direct and indirect effects of climate change is complex due to the large number of variables affected. Modeling based on climate projections is useful when combined with mechanistic explanations.SummaryExpansion of either the true range or the outbreak range is observed in several model species/groups of major insect guilds in boreal and temperate biomes. Mechanistic explanations are provided for a few species and are mainly based on increase in winter temperatures. In relation to insect abundance, climate change can either promote outbreaks or disrupt trophic interactions and decrease the severity of outbreaks. There is good evidence that some recent outbreaks of bark beetles and defoliating insects are influenced by climate change and are having a large impact on ecosystems as well as on communities of forest insects.
Author Roques, Alain
Battisti, Andrea
Pureswaran, Deepa S.
Author_xml – sequence: 1
  givenname: Deepa S.
  surname: Pureswaran
  fullname: Pureswaran, Deepa S.
  email: deepa.pureswaran@canada.ca
  organization: Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre
– sequence: 2
  givenname: Alain
  surname: Roques
  fullname: Roques, Alain
  organization: Institut National de la Recherche Agronomique (INRA), UR 0633, Zoologie Forestière
– sequence: 3
  givenname: Andrea
  surname: Battisti
  fullname: Battisti, Andrea
  organization: Department of Agronomy, Food, Natural resources Animals and Environment (DAFNAE), University of Padova
BackLink https://hal.inrae.fr/hal-02629304$$DView record in HAL
BookMark eNp9kE1LAzEURYNUsNb-AHcVN7oYffmYpFmWwdpCwY2uQ5omdso0qclU8N-bMopS0FU-OPdx3zlHPR-8RegSwx0GEPeJgSBlAXhc5GdZ8BPUJ1iOC84o7_26n6FhShsAIAIDoayPrqYh2tSO5j5Z06aR9qtR1dRb3dpRtdb-1V6gU6ebZIdf5wC9TB-eq1mxeHqcV5NFYRjhbSGFxKulFiUn2MjSSUyMAOs0ZksojaRGOCMNSHCcWyucNUJb6shKY8EIpQN0281d60btYq4QP1TQtZpNFurwB4QTSYG948zedOwuhrd97q-2dTK2abS3YZ8UgTGDEjMJGb0-QjdhH33eJFNUSgYYykyJjjIxpBStU6ZudVsH30ZdNwqDOphWnWmVTauDacVzEh8lv7v_lyFdJmU2K44_nf4OfQKni434
CitedBy_id crossref_primary_10_3390_microorganisms10112228
crossref_primary_10_1093_ee_nvac091
crossref_primary_10_1111_een_13053
crossref_primary_10_1016_j_foreco_2021_119048
crossref_primary_10_1002_ece3_9525
crossref_primary_10_1111_ddi_13814
crossref_primary_10_1016_j_foreco_2021_119953
crossref_primary_10_1016_j_heliyon_2023_e23142
crossref_primary_10_5091_plecevo_96572
crossref_primary_10_1016_j_agrformet_2022_109023
crossref_primary_10_1093_treephys_tpz029
crossref_primary_10_1007_s10980_021_01382_9
crossref_primary_10_1139_as_2021_0027
crossref_primary_10_1007_s00436_024_08180_7
crossref_primary_10_3390_d13030110
crossref_primary_10_1016_j_foreco_2019_117495
crossref_primary_10_1111_brv_12571
crossref_primary_10_1016_j_fecs_2025_100367
crossref_primary_10_3389_fclim_2023_1158386
crossref_primary_10_1016_j_agrformet_2023_109548
crossref_primary_10_1111_1365_2656_70104
crossref_primary_10_3390_f11020175
crossref_primary_10_1002_fee_2160
crossref_primary_10_1007_s00344_024_11548_9
crossref_primary_10_1038_s42003_023_04690_9
crossref_primary_10_1111_ppa_70041
crossref_primary_10_1016_j_scitotenv_2024_170117
crossref_primary_10_3390_rs16081365
crossref_primary_10_1007_s40725_022_00170_1
crossref_primary_10_1371_journal_pone_0250507
crossref_primary_10_1002_fee_2829
crossref_primary_10_1080_10106049_2020_1849413
crossref_primary_10_1134_S1062359024613338
crossref_primary_10_1111_afe_12470
crossref_primary_10_1111_afe_12591
crossref_primary_10_1016_j_foreco_2022_120400
crossref_primary_10_1139_cjfr_2024_0303
crossref_primary_10_1016_j_ecolind_2025_113488
crossref_primary_10_1080_11956860_2019_1666549
crossref_primary_10_3398_064_082_0311
crossref_primary_10_1016_j_scitotenv_2021_148853
crossref_primary_10_1146_annurev_ecolsys_110421_102101
crossref_primary_10_1038_s41467_023_39092_2
crossref_primary_10_1016_j_cois_2023_101020
crossref_primary_10_1111_gcb_14893
crossref_primary_10_1007_s10980_023_01678_y
crossref_primary_10_1016_j_scitotenv_2024_173847
crossref_primary_10_1016_j_foreco_2024_122133
crossref_primary_10_1371_journal_pone_0288067
crossref_primary_10_3832_ifor3960_015
crossref_primary_10_1016_j_foreco_2020_118270
crossref_primary_10_14411_eje_2022_028
crossref_primary_10_1038_s41598_025_97239_1
crossref_primary_10_3389_fevo_2025_1532974
crossref_primary_10_1080_00218839_2021_1999684
crossref_primary_10_1007_s10340_025_01955_6
crossref_primary_10_1016_j_fecs_2022_100056
crossref_primary_10_1016_j_fecs_2024_100177
crossref_primary_10_1007_s00285_022_01800_9
crossref_primary_10_3390_f15081458
crossref_primary_10_1080_03949370_2022_2157892
crossref_primary_10_1007_s10342_022_01468_2
crossref_primary_10_1093_jee_toz235
crossref_primary_10_1016_j_scitotenv_2024_172329
crossref_primary_10_1016_j_chaos_2024_115949
crossref_primary_10_1080_26395916_2021_1957021
crossref_primary_10_1016_j_cois_2020_06_003
crossref_primary_10_1093_jisesa_ieae089
crossref_primary_10_3390_insects12040369
crossref_primary_10_1139_cjfr_2022_0022
crossref_primary_10_1093_jee_toaf006
crossref_primary_10_1016_j_ecolind_2020_107120
crossref_primary_10_1155_2024_5998962
crossref_primary_10_1111_jbi_15151
crossref_primary_10_1080_02827581_2020_1808055
crossref_primary_10_3389_fmicb_2019_01238
crossref_primary_10_1111_eea_13488
crossref_primary_10_1038_s41598_022_22582_6
crossref_primary_10_3390_insects15030200
crossref_primary_10_1016_j_foreco_2021_119422
crossref_primary_10_1111_pce_14176
crossref_primary_10_1016_j_scs_2020_102656
crossref_primary_10_1038_s41467_021_21399_7
crossref_primary_10_3390_f15040602
crossref_primary_10_1111_pce_15383
crossref_primary_10_1016_j_foreco_2022_120041
crossref_primary_10_1002_fee_2190
crossref_primary_10_3390_f10010012
crossref_primary_10_3390_f15111968
crossref_primary_10_1007_s11273_022_09903_2
crossref_primary_10_1111_een_13142
crossref_primary_10_1038_s41467_021_26666_1
crossref_primary_10_1111_1744_7917_13358
crossref_primary_10_1073_pnas_2407057121
crossref_primary_10_1016_j_foreco_2025_123081
crossref_primary_10_3390_f14091730
crossref_primary_10_3390_insects13010079
crossref_primary_10_1016_j_foreco_2022_120399
crossref_primary_10_1038_s41467_025_56699_9
crossref_primary_10_3390_su14031914
crossref_primary_10_1007_s10342_023_01623_3
crossref_primary_10_1111_1748_5967_12763
crossref_primary_10_1038_s41598_025_98159_w
crossref_primary_10_1111_afe_12411
crossref_primary_10_3390_plants14070996
crossref_primary_10_1007_s00468_020_01971_2
crossref_primary_10_3390_s19183965
crossref_primary_10_1016_j_plaphe_2025_100057
crossref_primary_10_1111_mec_16160
crossref_primary_10_3389_fevo_2023_1293311
crossref_primary_10_1016_j_jenvman_2025_126710
crossref_primary_10_1093_jofore_fvac019
crossref_primary_10_3389_ffgc_2021_725066
crossref_primary_10_1016_j_ancene_2024_100432
crossref_primary_10_5194_bg_18_5053_2021
crossref_primary_10_1016_j_baae_2021_06_004
crossref_primary_10_3390_f16040655
crossref_primary_10_1016_j_foreco_2024_122106
crossref_primary_10_1016_j_isprsjprs_2024_07_027
crossref_primary_10_1016_j_scitotenv_2022_153041
crossref_primary_10_1016_j_foreco_2025_122968
crossref_primary_10_1093_jee_toad023
crossref_primary_10_1016_j_foreco_2018_10_040
crossref_primary_10_3389_ffgc_2023_1278409
crossref_primary_10_3390_atmos12050612
crossref_primary_10_1007_s10340_024_01765_2
crossref_primary_10_1002_ecm_70026
crossref_primary_10_1186_s13717_024_00520_w
crossref_primary_10_3390_insects14010084
crossref_primary_10_3390_biology13100803
crossref_primary_10_1007_s10980_024_01920_1
crossref_primary_10_4103_cs_cs_18_77
crossref_primary_10_1007_s00442_024_05528_9
crossref_primary_10_3390_f14071421
crossref_primary_10_3390_f14071302
crossref_primary_10_1007_s40725_024_00239_z
crossref_primary_10_1139_cjfr_2023_0058
crossref_primary_10_1007_s10336_020_01765_w
crossref_primary_10_1016_j_avrs_2022_100020
crossref_primary_10_1093_ee_nvab060
crossref_primary_10_1111_ecog_07370
crossref_primary_10_3390_f15040648
crossref_primary_10_1016_j_envexpbot_2021_104557
crossref_primary_10_1111_nph_17608
crossref_primary_10_1007_s40725_024_00215_7
crossref_primary_10_1134_S1995425523070144
crossref_primary_10_3897_neobiota_95_126311
crossref_primary_10_1088_1748_9326_adf12e
crossref_primary_10_3390_f12060799
crossref_primary_10_3390_f14040792
crossref_primary_10_1007_s40725_023_00189_y
crossref_primary_10_1016_j_jag_2025_104663
crossref_primary_10_1007_s42690_024_01191_y
crossref_primary_10_1111_ens_12440
crossref_primary_10_1002_rse2_70013
crossref_primary_10_1111_oik_10842
crossref_primary_10_1016_j_ejsobi_2025_103733
crossref_primary_10_1016_j_scitotenv_2025_178995
crossref_primary_10_1093_jee_toae215
crossref_primary_10_1111_afe_12506
crossref_primary_10_1007_s10340_020_01308_5
crossref_primary_10_1093_jee_toaf093
crossref_primary_10_1146_annurev_phyto_021722_024626
crossref_primary_10_46236_umbd_1546075
crossref_primary_10_1016_j_biocontrol_2025_105702
crossref_primary_10_3390_f14061116
crossref_primary_10_1007_s10584_025_03870_2
crossref_primary_10_1093_forestry_cpaa033
crossref_primary_10_1016_j_cois_2019_07_010
crossref_primary_10_1007_s11829_020_09750_z
crossref_primary_10_3390_rs12213502
crossref_primary_10_1007_s10530_025_03649_7
crossref_primary_10_1016_j_baae_2025_05_001
crossref_primary_10_3390_s22197100
crossref_primary_10_3390_f14020422
crossref_primary_10_1073_pnas_2424669122
crossref_primary_10_3832_ifor4520_017
crossref_primary_10_1111_oik_10989
crossref_primary_10_3389_ffgc_2024_1490888
crossref_primary_10_1080_02827581_2022_2060303
crossref_primary_10_1007_s40725_019_00098_z
crossref_primary_10_3390_su16072946
crossref_primary_10_1007_s41207_024_00650_9
crossref_primary_10_1007_s11676_022_01586_y
crossref_primary_10_1111_ecog_07020
crossref_primary_10_3390_f10030264
crossref_primary_10_3390_su16072703
crossref_primary_10_1111_1365_2745_13093
crossref_primary_10_1007_s10530_024_03485_1
crossref_primary_10_1007_s10980_025_02203_z
crossref_primary_10_3390_insects16030249
crossref_primary_10_1016_j_foreco_2025_123127
crossref_primary_10_1007_s11056_023_09965_x
crossref_primary_10_1111_afe_12672
crossref_primary_10_3390_jof8080788
crossref_primary_10_1007_s13744_024_01226_6
crossref_primary_10_1016_j_foreco_2020_118446
crossref_primary_10_3390_f12040385
crossref_primary_10_1007_s10841_022_00445_9
crossref_primary_10_3389_ffgc_2019_00077
crossref_primary_10_3389_ffgc_2021_670797
crossref_primary_10_1016_j_tree_2024_04_010
crossref_primary_10_3390_f14010031
crossref_primary_10_1016_j_gfs_2020_100348
crossref_primary_10_1007_s00468_023_02475_5
crossref_primary_10_1007_s11676_024_01807_6
crossref_primary_10_1016_j_scitotenv_2024_173377
crossref_primary_10_3390_d16070423
crossref_primary_10_3390_f15010033
crossref_primary_10_1007_s13595_019_0827_x
crossref_primary_10_1093_treephys_tpaa087
crossref_primary_10_1371_journal_pone_0307397
crossref_primary_10_1093_ee_nvae089
crossref_primary_10_1016_j_envsoft_2021_105233
crossref_primary_10_1080_0035919X_2022_2152507
crossref_primary_10_3389_fpls_2020_601009
crossref_primary_10_1016_j_foreco_2022_120677
crossref_primary_10_3390_f16061005
crossref_primary_10_1134_S1995425520070094
Cites_doi 10.1139/cjfr-2016-0211
10.1016/j.japb.2015.01.001
10.1007/s00442-014-2960-4
10.1641/B580607
10.1093/icb/39.2.323
10.1111/j.1461-9563.2012.00575.x
10.1111/afe.12043
10.1016/j.foreco.2015.01.028
10.1126/science.aaa9933
10.1111/icad.12078
10.1007/s10021-012-9629-9
10.1038/nclimate3303
10.1016/j.scitotenv.2016.05.187
10.1016/j.foreco.2012.09.006
10.1016/j.foreco.2012.12.018
10.1111/j.1600-0706.2009.17558.x
10.1002/2016JG003622
10.1111/een.12324
10.1111/j.1461-9563.2006.00321.x
10.1016/j.foreco.2007.05.020
10.1111/gcb.12506
10.1146/annurev.ento.52.110405.091418
10.1111/gcb.12692
10.1128/AEM.00068-13
10.1111/gcb.13142
10.1111/afe.12040
10.1007/s10530-011-9979-9
10.1111/j.1600-0587.2011.06847.x
10.1371/journal.pone.0176269
10.1525/bio.2010.60.8.6
10.1146/annurev-phyto-080614-120207
10.1017/CBO9781107415379.004
10.1111/gcb.13334
10.1007/s11707-016-0582-3
10.1080/02827581.2015.1052751
10.1146/annurev.en.39.010194.001143
10.1002/ece3.665
10.1002/2015GL067532
10.1093/forestry/cpv054
10.1111/afe.12200
10.1016/j.foreco.2015.11.045
10.1093/molbev/msu135
10.1139/x11-134
10.1007/s10584-013-0966-2
10.1111/j.1461-0248.2004.00659.x
10.1111/1365-2664.12644
10.1007/s10841-015-9806-1
10.1111/jvs.12410
10.1098/rspb.2000.1363
10.1007/s10530-013-0521-0
10.1890/09-0655.1
10.1017/pab.2014.11
10.1007/978-94-017-9340-7
10.1111/phen.12200
10.14214/sf.964
10.1016/j.foreco.2016.04.051
10.1016/j.gloplacha.2016.06.002
10.1007/s10265-013-0565-3
10.1146/annurev-ento-010715-023826
10.1016/j.foreco.2012.12.033
10.1016/j.foreco.2016.09.044
10.1080/02827581.2015.1086018
10.1093/ae/47.3.160
10.1134/S199542551606007X
10.1111/afe.12198
10.1080/02827581.2016.1195867
10.1046/j.1461-9563.2002.00124.x
10.1046/j.1365-2311.2003.00509.x
10.5194/bg-13-5277-2016
10.1079/9781780643786.0001
10.1007/s00442-013-2648-1
10.1016/j.cois.2017.03.006
10.1016/B978-0-12-417156-5.00013-7
10.1046/j.1472-4642.2002.00159.x
10.1111/gcb.12842
10.1073/pnas.0508839102
10.1073/pnas.1305533110
10.1007/s10530-010-9918-1
10.1111/phen
10.1007/s00442-012-2474-x
10.1098/rspb.2006.0191
10.1890/06-0512
10.1111/epp.12208
10.1073/pnas.1216666110
10.1007/s13595-017-0645-y
10.1016/j.foreco.2015.03.018
10.1111/gcb.12529
10.1007/s10584-012-0463-z
10.1890/ES12-00338.1
10.5849/forsci.13-056
10.1890/13-0760.1
10.1111/j.1600-0587.2013.00272.x
10.1007/s10530-016-1080-y
10.1111/j.1366-9516.2006.00218.x
10.1088/1748-9326/11/4/045008
10.1126/science.285.5430.1068
10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2
10.1007/s10841-015-9831-0
10.1046/j.1365-2699.1999.00363.x
10.1111/afe.12172
10.1007/s00442-008-1233-5
10.1146/annurev-ecolsys-110512-135858
10.1002/ece3.717
10.1111/j.1365-2656.2007.01339.x
10.1890/04-1903
10.1139/er-2013-0042
10.1016/j.foreco.2017.04.008
10.1007/s10144-017-0589-y
10.1111/nph.13477
10.1111/j.1466-8238.2006.00302.x
10.1890/13-0160.1
10.1002/eap.1463
10.1007/s10342-016-0939-x
10.1111/j.1365-2311.2012.01358.x
10.1038/nature06777
10.1186/s12898-016-0102-z
10.1016/j.scitotenv.2017.05.230
10.1111/j.1365-2699.2011.02673.x
10.1111/afe.12007
10.1007/s13595-013-0287-7
10.1139/x2012-069
10.1111/een.12005
10.1002/eap.1400
10.1890/11-0009.1
10.1371/journal.pone.0114282
10.1890/13-2366.1
10.1016/j.jtbi.2013.06.012
10.1111/gcb.13160
10.1371/journal.pbio.1002323
10.1098/rsbl.2013.0028
10.1002/ecs2.1396
10.1111/afe.12079
10.1139/cjfr-2014-0385
10.1111/j.1365-2486.2006.01124.x
10.1111/een.12400
10.1111/1365-2656.12647
10.1007/s11027-007-9127-0
10.1080/02827581.2015.1079644
10.1016/j.agrformet.2015.06.014
10.1111/j.1365-2311.2008.01045.x
10.1002/ece3.988
10.1073/pnas.1010270107
10.1016/j.agrformet.2013.04.015
10.1079/9781780643786.0173
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Springer Science & Business Media 2018
Copyright
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Springer Science & Business Media 2018
– notice: Copyright
DBID C6C
AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOI 10.1007/s40725-018-0075-6
DatabaseName Springer Nature OA Free Journals
CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Forestry
Environmental Sciences
EISSN 2198-6436
EndPage 50
ExternalDocumentID oai:HAL:hal-02629304v1
10_1007_s40725_018_0075_6
GroupedDBID -EM
0R~
203
406
AAAVM
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVXWI
AXYYD
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c426t-9791dba75621c95f912c70efa14b05c93c7fc9c090f66ee7fec7ae3f2da174233
IEDL.DBID RSV
ISICitedReferencesCount 278
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432549800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-6436
IngestDate Tue Oct 14 20:48:14 EDT 2025
Thu Oct 02 07:40:57 EDT 2025
Sun Nov 30 04:07:53 EST 2025
Sat Nov 29 05:56:17 EST 2025
Tue Nov 18 21:45:10 EST 2025
Fri Feb 21 02:42:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Impact
Biome
Outbreak
Review
Guild
Range
Community
Language English
License Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-9791dba75621c95f912c70efa14b05c93c7fc9c090f66ee7fec7ae3f2da174233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3734-3918
OpenAccessLink https://link.springer.com/10.1007/s40725-018-0075-6
PQID 2039940105
PQPubID 2044261
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_02629304v1
proquest_miscellaneous_2084051490
proquest_journals_2039940105
crossref_citationtrail_10_1007_s40725_018_0075_6
crossref_primary_10_1007_s40725_018_0075_6
springer_journals_10_1007_s40725_018_0075_6
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Current forestry reports
PublicationTitleAbbrev Curr Forestry Rep
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References HeimonenKValtonenAKontunen-SoppelaSKeski-SaariSRousiMOksanenERoininenHSusceptibility of silver birch (Betula pendula) to herbivorous insects is associated with the size and phenology of birch—implications for climate warmingScand J For Res2017329510410.1080/02827581.2016.1195867
FosterJRTownsendPAMladenoffDJMapping asynchrony between gypsy moth egg-hatch and forest leaf-out: putting the phenological window hypothesis in a spatial contextFor Ecol Manag2013287677610.1016/j.foreco.2012.09.006
AroraVKPengYKurzWAFyfeJCHawkinsBWernerATPotential near-future carbon uptake overcomes losses from a large insect outbreak in British ColumbiaCanada Geophys Res Lett2016432590259810.1002/2015GL0675321:CAS:528:DC%2BC28Xmt12ns7s%3D
PéréCJactelHKenisMResponse of insect parasitism to elevation depends on host and parasitoid life-history strategiesBiol Lett201392013002810.1098/rsbl.2013.0028
KivimäenpääMGhimireRPSutinenSHäikiöEKasurinenAHolopainenTHolopainenJKIncreases in volatile organic compound emissions of scots pine in response to elevated ozone and warming are modified by herbivory and soil nitrogen availabilityEur J For Res201613534336010.1007/s10342-016-0939-x1:CAS:528:DC%2BC28XitFCjtrg%3D
DavidGGiffardBPiouDRoquesAJactelHPotential effects of climate warming on the survivorship of adult Monochamus galloprovincialisAgr For Entomol20171919219910.1111/afe.12200
GrayDRQuantifying the sources of epistemic uncertainty in model predictions of insect disturbances in an uncertain climateAnn For Sci2017744810.1007/s13595-017-0645-y
AgostaSJHulshofCMStaatsEGOrganismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forestsJ Anim Ecol20178659060410.1111/1365-2656.12647
KwonT-SLeeCMKimS-SPrediction of abundance of beetles according to climate warming in South KoreaJ Asia-Pac Biodivers2015873010.1016/j.japb.2015.01.001
JamiesonMASchwartzbergEGRaffaKFReichPBLindrothRLExperimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivoreGlob Chang Biol2015212698271010.1111/gcb.12842
VisserMEHollemanLJMWarmer springs disrupt the synchrony of oak and winter moth phenologyProc Royal Soc Lond B – Biol Sci200126828929410.1098/rspb.2000.13631:STN:280:DC%2BD3Mzjslynsg%3D%3D
GherlendaANMooreBDHaighAMJohnsonSNRieglerMInsect herbivory in a mature eucalyptus woodland canopy depends on leaf phenology but not CO2 enrichmentBMC Ecol2016164710.1186/s12898-016-0102-z
BattistiAStastnyMNethererSRobinetCSchopfARoquesALarssonSExpansion of geographic range in pine processionary moth caused by increasing winter temperaturesEcol Appl2005152084209610.1890/04-1903
KarlsenSRJepsenJUOdlandAImsRAElvebakkAOutbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communitiesOecologia201317385987010.1007/s00442-013-2648-1
FitzpatrickMCPreisserELPorterAElkintonJEllisonAMModeling range dynamics in heterogeneous landscapes: invasion of the hemlock woolly adelgid in eastern North AmericaEcol Appl20122247248610.1890/11-0009.1
RaffaKFPowellENTownsendPATemperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defensesProc Natl Acad Sci USA20131102193219810.1073/pnas.1216666110Describes the interactions of the mountain pine beetle with a novel host plant.
KlapwijkMJCsókaGHirkaABjörkmanCForest insects and climate change: long-term trends in herbivore damageEcol Evol.201334183419610.1002/ece3.717
SidderAMKumarSLaituriMSiboldJSUsing spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetleEcosphere20167e0139610.1002/ecs2.1396
CandauJ-NFlemingRForecasting the response of spruce budworm defoliation to climate change in OntarioCan J For Res2011411948196010.1139/x11-134
HuttunenLSaravesiKMarkkolaANiemeläPDo elevations in temperature, CO2, and nutrient availability modify belowground carbon gain and root morphology in artificially defoliated silver birch seedlings?Ecol Evol201332783279410.1002/ece3.665
ChungHMuraokaHNakamuraMHanSMullerOSonYExperimental warming studies on tree species and forest ecosystems: a literature reviewJ Plant Res201312644746010.1007/s10265-013-0565-3
JohnsonDMBjørnstadONLiebholdAMLandscape geometry and travelling waves in the larch budmothEcol Lett2004796797410.1111/j.1461-0248.2004.00659.x
ClarkJSIversonLWoodallCWAllenCDBellDMBraggDCD'AmatoAWDavisFWHershMHIbanezIJacksonSTMatthewsSPedersonNPetersMSchwartzMWWaringKMZimmermannNEThe impacts of increasing drought on forest dynamics, structure, and biodiversity in the United StatesGlob Chang Biol2016222329235210.1111/gcb.13160
ZhangXLeiYMaZKneeshawDPengCInsect-induced tree mortality of boreal forests in eastern Canada under a changing climateEcol Evol.201442384239410.1002/ece3.988
SuTAdamsJMWapplerTHuangY-JJacquesFMBLiuY-SZhouZ-KResilience of plant-insect interactions in an oak lineage through quaternary climate changePaleobiol20154117418610.1017/pab.2014.11
KurzWAAppsMJA 70-year retrospective analysis of carbon fluxes in the Canadian forest sectorEcol Appl2008952654710.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2
RobinetCBaierPPennerstorferJSchopfARoquesAModelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in FranceGlob Ecol Biogeog20071646047110.1111/j.1466-8238.2006.00302.x
FurlongMJZaluckiMPClimate change and biological control: the consequences of increasing temperatures on host–parasitoid interactionsCurr Opin Insect Sci201720394410.1016/j.cois.2017.03.006
TudoranM-MMarquerLJönssonAMHistorical experience (1850–1950 and 1961–2014) of insect species responsible for forest damage in Sweden: influence of climate and land management changesFor Ecol Manag201638134735910.1016/j.foreco.2016.09.044
TamburiniGMariniLHellriglKSalvadoriCBattistiAEffects of climate and density-dependent factors on population dynamics of the pine processionary moth in the southern alpsClimat Chang201312170171210.1007/s10584-013-0966-2
SeidlRThomDKautzMMartin-BenitoDPeltoniemiMVacchianoGWildJAscoliDPetrMHonkaniemiJLexerMJTrotsiukVMairotaPSvobodaMFabrikaMNagelAReyerCPOForest disturbances under climate changeNat Clim Chang20177639540210.1038/nclimate3303
PureswaranDSDe GrandpréLDParéDTaylorABarretteMMorinHRégnièreJKneeshawDDClimate-induced changes in host tree-insect phenology may drive ecological state-shift in boreal forestsEcology2015961480149110.1890/13-2366.1
WilliamsDWLiebholdAMClimate change and the outbreak ranges of two north American bark beetlesAgric For Entomol20024879910.1046/j.1461-9563.2002.00124.x
RégnièreJSt-AmantRDuvalPPredicting insect distributions under climate change from physiological responses: spruce budworm as an exampleBiol Invas.2012141571158610.1007/s10530-010-9918-1
ZouYSangWAxmacherJCResilience of insect assemblages to climate change in mature temperate mountain forests of NE ChinaJ Insect Conserv2015191163117210.1007/s10841-015-9831-0
FordhamDAMesocosms reveal ecological surprises from climate changePLoS Biol201513e100232310.1371/journal.pbio.10023231:CAS:528:DC%2BC28XnsVSitr4%3D
Roques A. Processionary moths and climate change: an update. 2015; Springer-Quae, Dordrecht. An overview of the processionary moths and their relationships with climate change.
WainhouseDInwardDJGMorganGModelling geographical variation in voltinism of Hylobius abietis under climate change and implications for managementAgr For Entomol.20141613614610.1111/afe.12043
ParadisAElkintonJHayhoeKBuonaccorsiJRole of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North AmericaMitig Adapt Strat Glob Change20081354155410.1007/s11027-007-9127-0
JohnsonDMBüntgenUFrankDCKausrudKHaynesKJLiebholdAMEsperJStensethNCClimatic warming disrupts recurrent alpine insect outbreaksProc Natl Acad Sci U S A2010107205762058110.1073/pnas.1010270107
EFSA and Panel on Plant HealthRisk assessment of the oriental chestnut gall wasp, Dryocosmus kuriphilus for the EU territory on request from the European CommissionEFSA J201081114
FierravantiACocozzaCPalomboCRossiSDeslauriersATognettiREnvironmental-mediated relationships between tree growth of black spruce and abundance of spruce budworm along a latitudinal transect in QuebecCanada Agr For Meteorol2015213536310.1016/j.agrformet.2015.06.014
GherlendaANEsveldJLHallAAGDuursmaRARieglerMBoom and bust: rapid feedback responses between insect outbreak dynamics and canopy leaf area impacted by rainfall and CO2Glob Chang Biol2016223632364110.1111/gcb.13334
KurzWADymondCCStinsonGRampleyGJNeilsonETCarrollALEbataTSafranyikLMountain pine beetle and forest carbon feedback to climate changeNature200845298799010.1038/nature067771:CAS:528:DC%2BD1cXltVGrtrY%3DOne of the largest ever documented impacts of an insect on forest and carbon cycle
BentzBJRegniereJFettigCJHansenEMHayesJLHickeJAKelseyRGNegronJFSeyboldSJClimate change and bark beetles of the western United States and Canada: direct and indirect effectsBioscience20106060261310.1525/bio.2010.60.8.6
StiremanJOIIIDyerLAJanzenDHSingerMSLillJTMarquisRJRicklefsREGentryGLHallwachsWColeyPDBaroneJAGreeneyHFConnahsHBarbosaPMoraisHCDinizIRClimatic unpredictability and parasitism of caterpillars: implications of global warmingProc Natl Acad Sci2005102173841738710.1073/pnas.05088391021:CAS:528:DC%2BD2MXhtlSqtb%2FO
KozlovMVvan NieukerkenEJZverevVZverevaELAbundance and diversity of birch-feeding leaf miners along latitudinal gradients in northern EuropeEcography2013361138114910.1111/j.1600-0587.2013.00272.x
Tobin PC, Turcotte RM, Blackburn LM, Juracko JA, Simpson BT. The big chill: quantifying the effect of the 2014 north American cold wave on hemlock woolly adelgid populations in the central Appalachian Mountains. Popul Ecol 2017; https://doi.org/10.1007/s10144-017-0589-y.
BentzBVandygriffJJensenCColemanTMaloneyPSmithSGradyASchen-LangenheimGMountain pine beetle voltinism and life history characteristics across latitudinal and elevational grad
AS Weed (75_CR20) 2013; 83
I Kollberg (75_CR90) 2013; 38
BD Roitberg (75_CR33) 2016; 41
J-S Landry (75_CR131) 2016; 13
DM Johnson (75_CR52) 2010; 107
A Roques (75_CR78) 2016; 18
AR Hof (75_CR73) 2016; 31
JA Logan (75_CR110) 2001; 47
ML Hillstrom (75_CR138) 2014; 7
JH Myers (75_CR35) 2017; 62
JA Uelmen Jr (75_CR39) 2016; 362
T Su (75_CR24) 2015; 41
75_CR77
EL Zvereva (75_CR81) 2016; 566-567
E Youngsteadt (75_CR89) 2015; 21
MD Hunter (75_CR135) 2014; 20
X Zhang (75_CR119) 2014; 4
AM Sidder (75_CR57) 2016; 7
JJ Worrall (75_CR126) 2013; 299
MJ Klapwijk (75_CR27) 2013; 3
P Baier (75_CR99) 2007; 249
T Ammunét (75_CR47) 2012; 37
MJ Ungerer (75_CR54) 1999; 26
C Leppanen (75_CR31) 2017; 19
S Backhaus (75_CR87) 2014; 8
75_CR82
R Seidl (75_CR5) 2017; 76
JA Banfield-Zanin (75_CR103) 2015; 17
WRL Anderegg (75_CR7) 2015; 208
Y Boulanger (75_CR28) 2012; 42
75_CR86
75_CR1
J Esper (75_CR51) 2007; 274
AJ Allstadt (75_CR12) 2013; 172
D Thom (75_CR149) 2017; 54
75_CR3
C Péré (75_CR144) 2013; 9
75_CR2
SR Karlsen (75_CR123) 2013; 173
75_CR128
WA Kurz (75_CR133) 2008; 9
A Paradis (75_CR68) 2008; 13
A Valtonen (75_CR148) 2013; 4
MC Fitzpatrick (75_CR69) 2012; 22
JJ Turgeon (75_CR115) 1994; 39
A Battisti (75_CR132) 2015
G Tamburini (75_CR92) 2013; 121
Y Zou (75_CR145) 2015; 19
JR Muirhead (75_CR53) 2006; 12
P Turchin (75_CR146) 1999; 285
JU Jepsen (75_CR25) 2013; 16
AN Gherlenda (75_CR105) 2016; 16
BN Poncet (75_CR117) 2009; 159
A Fierravanti (75_CR79) 2015; 213
75_CR118
DA Fordham (75_CR40) 2015; 13
MV Kozlov (75_CR102) 2017; 601–602
MV Lantschner (75_CR76) 2014; 16
JH Myers (75_CR11) 2013; 44
DW Williams (75_CR9) 2002; 4
DJG Inward (75_CR100) 2012; 14
DP Bebber (75_CR21) 2015; 53
KF Raffa (75_CR59) 2013; 110
JS Clark (75_CR29) 2016; 22
C Robinet (75_CR42) 2007; 16
KJ Haynes (75_CR26) 2014; 20
L Berec (75_CR97) 2013; 292
JRM Robson (75_CR80) 2015; 347
AL Addison (75_CR147) 2013; 335
BJ Bentz (75_CR16) 2010; 60
AS Adams (75_CR58) 2013; 79
F Chinellato (75_CR141) 2014; 16
A Rubin-Aguirre (75_CR142) 2015; 343
T-S Kwon (75_CR143) 2015; 8
M Schebeck (75_CR112) 2017; 42
M Kivimäenpää (75_CR84) 2016; 135
JA Logan (75_CR134) 2010; 20
KM Renwick (75_CR127) 2016; 27
AFG Dixon (75_CR109) 2003; 28
EG Schwartzberg (75_CR37) 2014; 175
SE Smith (75_CR64) 2013; 15
M-M Tudoran (75_CR150) 2016; 381
L Huttunen (75_CR121) 2013; 3
BJ Bentz (75_CR63) 2015
KF Raffa (75_CR10) 2008; 58
J Jing (75_CR140) 2017; 11
75_CR32
BJ Bentz (75_CR62) 2016; 89
P Walker (75_CR66) 2002; 8
JI Barredo (75_CR65) 2015; 45
L Huttunen (75_CR122) 2013; 47
DR Gray (75_CR45) 2017; 74
B Bentz (75_CR61) 2014; 60
RD DeSantis (75_CR95) 2013; 178–179
M Asch van (75_CR108) 2007; 52
JOIII Stireman (75_CR106) 2005; 102
HMC Giroday De la (75_CR56) 2012; 39
MV Kozlov (75_CR101) 2013; 36
CA Williams (75_CR14) 2016; 143
O Ovaskainen (75_CR136) 2013; 110
MJ Furlong (75_CR34) 2017; 20
A Battisti (75_CR49) 2005; 15
JU Jepsen (75_CR46) 2008; 77
K Voolma (75_CR85) 2016; 18
SJ Agosta (75_CR94) 2017; 86
75_CR41
75_CR43
KR Sambaraju (75_CR111) 2012; 35
ME Visser (75_CR83) 2001; 268
DM Johnson (75_CR19) 2004; 7
75_CR48
AR Hof (75_CR75) 2016; 31
VK Arora (75_CR130) 2016; 43
D Wainhouse (75_CR114) 2014; 16
M Marquis (75_CR139) 2014; 95
DT Price (75_CR4) 2013; 21
PMA James (75_CR120) 2017; 27
JR Foster (75_CR88) 2013; 287
Å Berggren (75_CR107) 2009; 118
C Robinet (75_CR22) 2014; 71
K Heimonen (75_CR137) 2017; 32
H Chung (75_CR36) 2013; 126
M Saulnier (75_CR93) 2017; 47
RB Huey (75_CR30) 1999; 39
LA Cooper (75_CR13) 2017; 122
A Battisti (75_CR23) 2006; 12
C Robinet (75_CR50) 2012; 14
75_CR91
EFSA and Panel on Plant Health (75_CR67) 2010; 8
Y Boulanger (75_CR70) 2016; 22
75_CR96
75_CR15
N Mietkiewicz (75_CR129) 2016; 26
M Groot de (75_CR125) 2015; 19
N Björklund (75_CR74) 2016; 31
DS Pureswaran (75_CR18) 2015; 96
J Régnière (75_CR44) 2012; 14
JK Trân (75_CR55) 2007; 17
MA Jamieson (75_CR38) 2015; 21
WA Kurz (75_CR6) 2008; 452
J-N Candau (75_CR17) 2011; 41
L Marini (75_CR113) 2012; 115
AN Gherlenda (75_CR104) 2016; 22
CI Millar (75_CR8) 2015; 349
JK Janes (75_CR60) 2014; 31
G David (75_CR98) 2017; 19
BJ Cooke (75_CR71) 2017; 396
J-M Sachet (75_CR116) 2009; 34
VI Kharuk (75_CR124) 2016; 9
E Buffo (75_CR72) 2007; 9
References_xml – reference: MarquisMDel ToroIPeliniSLInsect mutualisms buffer warming effects on multiple trophic levelsEcology20149591310.1890/13-0760.1
– reference: ThomDRammerWDirnböckTMüllerJKoblerJKatzensteinerKHelmNSeidlRThe impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscapeJ Appl Ecol201754283810.1111/1365-2664.12644
– reference: Nicholls N. et al. Observed climate variability and change. In: Climate change 1995: the science of climate change. Intergovernmental Panel on Climate Change (IPCC). Cambridge Univ. Press, Cambridge; 1996. p. 133.
– reference: •• Field CB, Barros VR, Mach KJ, Mastrandrea MD, van Aalst M, Adger WN, Arent DJ, Barnett J, Betts R, Bilir TE, Birkmann J, Carmin J, Chadee DD, Challinor AJ, Chatterjee M, Cramer W, Davidson DJ, Estrada YO, Gattuso J-P, Hijioka Y, Hoegh-Guldberg O, Huang HQ, Insarov GE, Jones RN, Kovats RS, Romero-Lankao P, Larsen JN, Losada IJ, Marengo JA, McLean RF, Mearns LO, Mechler R, Morton JF, Niang I, Oki T, Olwoch JM, Opondo M, Poloczanska ES, Pörtner H-O, Redsteer MH, Reisinger A, Revi A, Schmidt DN, Shaw MR, Solecki W, Stone DA, Stone JMR, Strzepek KM, Suarez AG, Tschakert P, Valentini R, Vicuña S, Villamizar A, Vincent KE, Warren R, White LL, Wilbanks TJ, Wong PP, and Yohe GW. Technical summary. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, and White LL. Editors. Climate change 2014: Impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge; pp. 35-94. Sets the scene for current and future climate change research.
– reference: KozlovMVvan NieukerkenEJZverevVZverevaELAbundance and diversity of birch-feeding leaf miners along latitudinal gradients in northern EuropeEcography2013361138114910.1111/j.1600-0587.2013.00272.x
– reference: • Roques A. Processionary moths and climate change: an update. 2015; Springer-Quae, Dordrecht. An overview of the processionary moths and their relationships with climate change.
– reference: UngererMJAyresMPLombarderoMJClimate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae)J Biogeogr1999261133114510.1046/j.1365-2699.1999.00363.x
– reference: Banfield-ZaninJALeatherSRSeason and drought stress mediate growth and weight of the green spruce aphid on Sitka spruceAgr For Entomol.201517485610.1111/afe.12079
– reference: RégnièreJSt-AmantRDuvalPPredicting insect distributions under climate change from physiological responses: spruce budworm as an exampleBiol Invas.2012141571158610.1007/s10530-010-9918-1
– reference: • Rosenberger DW, Venette RC, Maddox MP, Aukema BH. Colonization behaviors of mountain pine beetle on novel hosts: implications for range expansion into Northeastern North America. PLoS ONE. 2017; https://doi.org/10.1371/journal.pone.0176269. Uses manipulative experiments to test susceptibility of naïve host species to a range-expanding, tree-killing pest.
– reference: UelmenJAJrLindrothRLTobinPCReichPBSchwartzbergEGRaffaKFEffects of winter temperatures, spring degree-day accumulation, and insect population source on phenological synchrony between forest tent caterpillar and host treesFor Ecol Manag201636224125010.1016/j.foreco.2015.11.045
– reference: SuTAdamsJMWapplerTHuangY-JJacquesFMBLiuY-SZhouZ-KResilience of plant-insect interactions in an oak lineage through quaternary climate changePaleobiol20154117418610.1017/pab.2014.11
– reference: PureswaranDSDe GrandpréLDParéDTaylorABarretteMMorinHRégnièreJKneeshawDDClimate-induced changes in host tree-insect phenology may drive ecological state-shift in boreal forestsEcology2015961480149110.1890/13-2366.1
– reference: KurzWAAppsMJA 70-year retrospective analysis of carbon fluxes in the Canadian forest sectorEcol Appl2008952654710.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2
– reference: BentzBJJönssonAMVegaFEHofstetterRWModeling bark beetle responses to climate changeBark beetles2015San DiegoAcademic press53355310.1016/B978-0-12-417156-5.00013-7Reviews the modeling approach to the bark beetle dynamics under a climate change scenario.
– reference: JamesPMARobertL-EWottonBMMartellDLFlemingRALagged cumulative spruce budworm defoliation affects the risk of fire ignition in OntarioCanada Ecol Appl20172753254410.1002/eap.1463
– reference: KharukVIDemidkoDAFedotovaEVDvinskayaMLBudnikUASpatial and temporal dynamics of Siberian silk moth large-scale outbreak in dark-needle coniferous tree stands in AltaiContemp Prob Ecol2016971172010.1134/S199542551606007X
– reference: BentzBJRegniereJFettigCJHansenEMHayesJLHickeJAKelseyRGNegronJFSeyboldSJClimate change and bark beetles of the western United States and Canada: direct and indirect effectsBioscience20106060261310.1525/bio.2010.60.8.6
– reference: BentzBVandygriffJJensenCColemanTMaloneyPSmithSGradyASchen-LangenheimGMountain pine beetle voltinism and life history characteristics across latitudinal and elevational gradients in the western United StatesFor Sci201460434449
– reference: FurlongMJZaluckiMPClimate change and biological control: the consequences of increasing temperatures on host–parasitoid interactionsCurr Opin Insect Sci201720394410.1016/j.cois.2017.03.006
– reference: Tobin PC, Turcotte RM, Blackburn LM, Juracko JA, Simpson BT. The big chill: quantifying the effect of the 2014 north American cold wave on hemlock woolly adelgid populations in the central Appalachian Mountains. Popul Ecol 2017; https://doi.org/10.1007/s10144-017-0589-y.
– reference: ZouYSangWAxmacherJCResilience of insect assemblages to climate change in mature temperate mountain forests of NE ChinaJ Insect Conserv2015191163117210.1007/s10841-015-9831-0
– reference: De la GirodayHMCCarrollALAukemaBHBreach of the northern Rocky Mountain geoclimatic barrier: initiation of range expansion by the mountain pine beetleJ Biogeogr2012391112112310.1111/j.1365-2699.2011.02673.x
– reference: DixonAFGClimate change and phenological asynchronyEcol Entomol.20032838038110.1046/j.1365-2311.2003.00509.x
– reference: CandauJ-NFlemingRForecasting the response of spruce budworm defoliation to climate change in OntarioCan J For Res2011411948196010.1139/x11-134
– reference: WalkerPLeatherSRCrawleyMJDifferential rates of invasion in three related alien oak gall wasps (Cynipidae: hymenoptera)Diver Distrib.2002833534910.1046/j.1472-4642.2002.00159.x
– reference: MillarCIStephensonNLTemperate forest health in an era of emerging megadisturbanceScience201534982382610.1126/science.aaa99331:CAS:528:DC%2BC2MXhtlKltrbN
– reference: AllstadtAJHaynesKJLiebholdAMJohnsonDMLong-term shifts in the cyclicity of outbreaks of a forest-defoliating insectOecologia201317214115110.1007/s00442-012-2474-x
– reference: CookeBJCarrollALPredicting the risk of mountain pine beetle spread to eastern pine forests: considering uncertainty in uncertain timesFor Ecol Manag2017396112510.1016/j.foreco.2017.04.008
– reference: BattistiAStastnyMBuffoELarssonSA rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomalyGlob Chang Biol20061266267110.1111/j.1365-2486.2006.01124.x
– reference: Pepi AA, Vinstad OPL, Ek M, Jepsen JU. Elevationally biased avian predation as a contributor to the spatial distribution of geometrid moth outbreaks in sub-arctic mountain birch forest. Ecol Entomol. 2017. https://doi.org/10.1111/een.12400.
– reference: HuttunenLAyresMPNiemeläPHeiskaSTegelbergRRousiMKellomäkiSInteractive effects of defoliation and climate change on compensatory growth of silver birch seedlingsSilva Fennica20134711410.14214/sf.964
– reference: BoulangerYArseneaultDMorinHJardonYBertrandPDagneauCDendrochronological reconstruction of spruce budworm (Choristoneura fumiferana) outbreaks in southern Quebec for the last 400 yearsCan J For Res2012421264127610.1139/x2012-069
– reference: DeSantisRDMoserWKGormansonDDBartlettMGVermuntBEffects of climate on emerald ash borer mortality and the potential for ash survival in North AmericaAgr For Meteorol2013178–17912012810.1016/j.agrformet.2013.04.015
– reference: PoncetBNGaratPManelSRoquesADespresLThe effect of climate on masting in the European larch and on its specific seed predatorsOecologia200915952753710.1007/s00442-008-1233-5
– reference: HeimonenKValtonenAKontunen-SoppelaSKeski-SaariSRousiMOksanenERoininenHSusceptibility of silver birch (Betula pendula) to herbivorous insects is associated with the size and phenology of birch—implications for climate warmingScand J For Res2017329510410.1080/02827581.2016.1195867
– reference: MariniLAyresMPBattistiAFaccoliMClimate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetleClimat Chang.201211532734110.1007/s10584-012-0463-z
– reference: BoulangerYGrayDRCookeBJDe GrandpréLModel-specification uncertainty in future forest pest outbreaksGlob Chang Biol2016221595160710.1111/gcb.13142
– reference: SeidlRThomDKautzMMartin-BenitoDPeltoniemiMVacchianoGWildJAscoliDPetrMHonkaniemiJLexerMJTrotsiukVMairotaPSvobodaMFabrikaMNagelAReyerCPOForest disturbances under climate changeNat Clim Chang20177639540210.1038/nclimate3303
– reference: RaffaKFAukemaBHBarbaraJBentzBJCarrollALHicke JAJATurner MGMGRomme WHWHCross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptionsBioscience20085850151710.1641/B580607
– reference: GherlendaANEsveldJLHallAAGDuursmaRARieglerMBoom and bust: rapid feedback responses between insect outbreak dynamics and canopy leaf area impacted by rainfall and CO2Glob Chang Biol2016223632364110.1111/gcb.13334
– reference: FitzpatrickMCPreisserELPorterAElkintonJEllisonAMModeling range dynamics in heterogeneous landscapes: invasion of the hemlock woolly adelgid in eastern North AmericaEcol Appl20122247248610.1890/11-0009.1
– reference: RaffaKFPowellENTownsendPATemperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defensesProc Natl Acad Sci USA20131102193219810.1073/pnas.1216666110Describes the interactions of the mountain pine beetle with a novel host plant.
– reference: AddisonALPowellJASixDLMooreMBentzBJThe role of temperature variability in stabilizing the mountain pine beetle–fungus mutualismJ Theor Biol2013335405010.1016/j.jtbi.2013.06.0121:STN:280:DC%2BC3sjkvFWnsQ%3D%3D
– reference: HueyRBBerriganDGilchrGWHerronJCTesting the adaptive significance of acclimation: a strong inference approachAmer Zool19993932333610.1093/icb/39.2.323
– reference: Jameson RG, Trant AJ, Hermanutz L. Insects can limit seed productivity at the treeline. Can J For Res. 2015;45:286 296.
– reference: SambarajuKRCarrollALZhuJStahlKMooreRDAukemaBHClimate change could alter the distribution of mountain pine beetle outbreaks in western CanadaEcography20123521122310.1111/j.1600-0587.2011.06847.x
– reference: RenwickKMRoccaMEStohlgrenTJBiotic disturbance facilitates range shift at the trailing but not the leading edge of lodgepole pine’s altitudinal distributionJ Veget Sci20162778078810.1111/jvs.12410
– reference: HofARSvahlinAThe potential effect of climate change on the geographical distribution of insect pest species in the Swedish boreal forestScand J For Res201631293910.1080/02827581.2015.1052751
– reference: SchebeckMHansenMSchopfAGregoryJRaglandCBentzBJDiapause and overwintering of two spruce bark beetle speciesPhys Entomol20174220021010.1111/phen.122001:CAS:528:DC%2BC2sXht1yktbfJ
– reference: HillstromMLCoutureJJLindrothRLElevated carbon dioxide and ozone have weak, idiosyncratic effects on herbivorous forest insect abundance, species richness, and community compositionInsect Conserv Diver2014755356210.1111/icad.12078
– reference: FosterJRTownsendPAMladenoffDJMapping asynchrony between gypsy moth egg-hatch and forest leaf-out: putting the phenological window hypothesis in a spatial contextFor Ecol Manag2013287677610.1016/j.foreco.2012.09.006
– reference: AgostaSJHulshofCMStaatsEGOrganismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forestsJ Anim Ecol20178659060410.1111/1365-2656.12647
– reference: JohnsonDMBjørnstadONLiebholdAMLandscape geometry and travelling waves in the larch budmothEcol Lett2004796797410.1111/j.1461-0248.2004.00659.x
– reference: LandryJ-SParrottLPriceDRamankuttyNDamonMHModelling long-term impacts of mountain pine beetle outbreaks on merchantable biomass, ecosystem carbon, albedo, and radiative forcingBiogeosciences2016135277529510.5194/bg-13-5277-2016
– reference: VisserMEHollemanLJMWarmer springs disrupt the synchrony of oak and winter moth phenologyProc Royal Soc Lond B – Biol Sci200126828929410.1098/rspb.2000.13631:STN:280:DC%2BD3Mzjslynsg%3D%3D
– reference: CooperLABallantyneAPHoldenZALandguthELDisturbance impacts on land surface temperature and gross primary productivity in the western United StatesJ Geophys Res Biogeosci201712293094610.1002/2016JG003622
– reference: KurzWADymondCCStinsonGRampleyGJNeilsonETCarrollALEbataTSafranyikLMountain pine beetle and forest carbon feedback to climate changeNature200845298799010.1038/nature067771:CAS:528:DC%2BD1cXltVGrtrY%3DOne of the largest ever documented impacts of an insect on forest and carbon cycle
– reference: RoitbergBDMangelMCold snaps and heat waves on arthropodsEcol Entomol.20164165365910.1111/een.12324
– reference: ClarkJSIversonLWoodallCWAllenCDBellDMBraggDCD'AmatoAWDavisFWHershMHIbanezIJacksonSTMatthewsSPedersonNPetersMSchwartzMWWaringKMZimmermannNEThe impacts of increasing drought on forest dynamics, structure, and biodiversity in the United StatesGlob Chang Biol2016222329235210.1111/gcb.13160
– reference: HuttunenLSaravesiKMarkkolaANiemeläPDo elevations in temperature, CO2, and nutrient availability modify belowground carbon gain and root morphology in artificially defoliated silver birch seedlings?Ecol Evol201332783279410.1002/ece3.665
– reference: van AschMVisserMEPhenology of forest caterpillars and their host trees: the importance of synchronyAnnu Rev Entomol200752375510.1146/annurev.ento.52.110405.0914181:CAS:528:DC%2BD2sXhtFWntbk%3D
– reference: Rubin-AguirreASaenz-RomeroCLindig-CisnerosRdel -Rio-MoraAATena-MorelosCACampos-BolañosRdel -ValEBark beetle pests in an altitudinal gradient of a Mexican managed forestFor Ecol Manag2015343737910.1016/j.foreco.2015.01.028
– reference: FierravantiACocozzaCPalomboCRossiSDeslauriersATognettiREnvironmental-mediated relationships between tree growth of black spruce and abundance of spruce budworm along a latitudinal transect in QuebecCanada Agr For Meteorol2015213536310.1016/j.agrformet.2015.06.014
– reference: RobinetCRousseletJRoquesAPotential spread of the pine processionary moth in France: preliminary results from a simulation model and future challengesAnn For Sci20147114916010.1007/s13595-013-0287-7
– reference: RobinetCBaierPPennerstorferJSchopfARoquesAModelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in FranceGlob Ecol Biogeog20071646047110.1111/j.1466-8238.2006.00302.x
– reference: SmithSEMendozaMGZúñigaGHalbrookKHayesJLByrneDNPredicting the distribution of a novel bark beetle and its pine hosts under future climate conditionsAgr For Entomol.20131521222610.1111/afe.12007
– reference: LoganJAPowellJAGhost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae)Am Entomol20014716017310.1093/ae/47.3.160
– reference: JingJXiaLLiKDevelopment of defoliating insects and their preferences for host plants under varying temperatures in a subtropical evergreen forest in eastern ChinaFront Earth Sci20171132133110.1007/s11707-016-0582-31:CAS:528:DC%2BC28Xhs1aqtLvP
– reference: TamburiniGMariniLHellriglKSalvadoriCBattistiAEffects of climate and density-dependent factors on population dynamics of the pine processionary moth in the southern alpsClimat Chang201312170171210.1007/s10584-013-0966-2
– reference: Kolb TE, Fettig CJ, Ayres MP, Bentz BJ, Hicke JA, Mathiasen R, Stewart JE, Weed AS. Observed and anticipated impacts of drought on forest insects and diseases in the United States For Ecol Manag 2016;380:321–334.
– reference: Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, et al. (2011) A proposed unified framework for biological invasions. TREE. 2011; 26:333–339.
– reference: MyersJHCoryJSPopulation cycles in forest Lepidoptera revisitedAnnu Rev Ecol Evol Syst20134456559210.1146/annurev-ecolsys-110512-135858A thorough review on major factors affecting Lepidoptera population cycles.
– reference: WeedASAyresMPHickeJAConsequences of climate change for biotic disturbances in north American forestsEcol Monogr20138344147010.1890/13-0160.1
– reference: InwardDJGWainhouseDPeaceAThe effect of temperature on the development and life cycle regulation of the pine weevil, Hylobius abietis and the potential impacts of climate changeAgr For Entomol.20121434835710.1111/j.1461-9563.2012.00575.x
– reference: AmmunétTKaukorantaTSaikkonenKRepoTKlemolaTInvading and resident defoliators in a changing climate: cold tolerance and predictions concerning extreme winter cold as a range-limiting factorEcol Entomol.20123721222010.1111/j.1365-2311.2012.01358.x
– reference: BerggrenÅBjörkmanCBylundHAyresMPThe distribution and abundance of animal populations in a climate of uncertaintyOikos20091181121112610.1111/j.1600-0706.2009.17558.x
– reference: SchwartzbergEGJamiesonMARaffaKFReichPBMontgomeryRALindrothRLSimulated climate warming alters phenological synchrony between an outbreak insect herbivore and host treesOecologia20141751041104910.1007/s00442-014-2960-4
– reference: ParadisAElkintonJHayhoeKBuonaccorsiJRole of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North AmericaMitig Adapt Strat Glob Change20081354155410.1007/s11027-007-9127-0
– reference: Meigs GW, Zald HSJ, Campbell JL, Keeton WS, Kennedy RE. Do insect outbreaks reduce the severity of subsequent forest fires? Environ Res Lett. 2016; https://doi.org/10.1088/1748-9326/11/4/045008.
– reference: KwonT-SLeeCMKimS-SPrediction of abundance of beetles according to climate warming in South KoreaJ Asia-Pac Biodivers2015873010.1016/j.japb.2015.01.001
– reference: TurgeonJJRoquesAde GrootPInsect fauna of coniferous seed cones: diversity, host plant interactions, and managementAnnu Rev Entomol19943917921210.1146/annurev.en.39.010194.001143
– reference: KollbergIBylundHSchmidtAGershenzonJBjörkmanCMultiple effects of temperature, photoperiod and food quality on the performance of a pine sawflyEcol Entomol20133820120810.1111/een.12005
– reference: JohnsonDMBüntgenUFrankDCKausrudKHaynesKJLiebholdAMEsperJStensethNCClimatic warming disrupts recurrent alpine insect outbreaksProc Natl Acad Sci U S A2010107205762058110.1073/pnas.1010270107
– reference: LantschnerMVVillacideJMGarnasJRCroftPCarnegieAJLiebholdAMCorleyJCTemperature explains variable spread rates of the invasive woodwasp, Sirex noctilio, in the southern hemisphereBiol Invas.20141632933910.1007/s10530-013-0521-0
– reference: BackhausSWiehlDBeierkuhnleinCJentschAWellsteinCWarming and drought do not influence the palatability of Quercus pubescens Willd. leaves of four European provenancesArthropod-Plant Interact20148329337
– reference: BerecLDoležalPHaisMPopulation dynamics of Ips typographus in the Bohemian Forest (Czech Republic): validation of the phenology model PHENIPS and impacts of climate changeFor Ecol Manag20132921910.1016/j.foreco.2012.12.018
– reference: StiremanJOIIIDyerLAJanzenDHSingerMSLillJTMarquisRJRicklefsREGentryGLHallwachsWColeyPDBaroneJAGreeneyHFConnahsHBarbosaPMoraisHCDinizIRClimatic unpredictability and parasitism of caterpillars: implications of global warmingProc Natl Acad Sci2005102173841738710.1073/pnas.05088391021:CAS:528:DC%2BD2MXhtlSqtb%2FO
– reference: de GrootMKogojMTemperature, leaf cover density and solar radiation influence the abundance of an oligophagous insect herbivore at the southern edge of its rangeJ Insect Conserv20151989189910.1007/s10841-015-9806-1
– reference: ZhangXLeiYMaZKneeshawDPengCInsect-induced tree mortality of boreal forests in eastern Canada under a changing climateEcol Evol.201442384239410.1002/ece3.988
– reference: JepsenJUHagenSBImsRAYoccozNGClimate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansionJ Anim Ecol20087725726410.1111/j.1365-2656.2007.01339.x
– reference: ChinellatoFFaccoliMMariniLBattistiADistribution of Norway spruce bark and wood-boring beetles along alpine elevational gradientsAgr For Entomol.20141611111810.1111/afe.12040
– reference: BebberDPRange expanding pests and pathogens in a warming worldAnnu Rev Phytopathol20155333535610.1146/annurev-phyto-080614-1202071:CAS:528:DC%2BC2MXhsFWrsbzP
– reference: HunterMDKozlovMVItämiesJPulliainenEBäckJKyröE-MNiemeläPCurrent temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest mothsGlob Chang Biol2014201723173710.1111/gcb.12529
– reference: Thompson LM, Faske TM, Banahene N, Grim D, Agosta SJ, Parry D, Tobin PC, Johnson DM, Grayson KL. Variation in growth and developmental responses to supraoptimal temperatures near latitudinal range limits of gypsy moth Lymantria dispar (L.), an expanding invasive species. Physiol Entomol. 2017; https://doi.org/10.1111/phen.
– reference: TudoranM-MMarquerLJönssonAMHistorical experience (1850–1950 and 1961–2014) of insect species responsible for forest damage in Sweden: influence of climate and land management changesFor Ecol Manag201638134735910.1016/j.foreco.2016.09.044
– reference: HofARSvahlinANot erroneous but cautious conclusions about the potential effect of climate change on the geographical distribution of insect pest species in the Swedish boreal forest. Response to Björklund et al. (2015)Scand J For Res20163112812910.1080/02827581.2015.1079644
– reference: FordhamDAMesocosms reveal ecological surprises from climate changePLoS Biol201513e100232310.1371/journal.pbio.10023231:CAS:528:DC%2BC28XnsVSitr4%3D
– reference: AdamsASAylwardFOAdamsSMErbilginNAukemaBHCurrieCRSuenGRaffaKFMountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolismAppl Environ Microbiol2013793468347510.1128/AEM.00068-131:CAS:528:DC%2BC3sXotFamtL4%3D
– reference: TrânJKYliojaTBillingsRFRégnièreJAyresMPImpact of minimum winter temperatures on the population dynamics of Dendroctonus frontalisEcol Appl20071788289910.1890/06-0512
– reference: HaynesKJAllstadtAJKlimetzekDForest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pestsGlob Chang Biol2014202004201810.1111/gcb.12506
– reference: YoungsteadtEDaleAGTerandoAJDunnRRFrankSDDo cities simulate climate change? A comparison of herbivore response to urban and global warmingGlob Chang Biol2015219710510.1111/gcb.12692
– reference: WorrallJJRehfeldtGEHamannAHoggEHMarchettiSBMichaelianMGrayLKRecent declines of Populus tremuloides in North America linked to climateFor Ecol Manag2013299355110.1016/j.foreco.2012.12.033
– reference: MuirheadJRLeungBVan OverdijkCKellyDWNandakumarKMarchantKRMacIsaacHJModelling local and long-distance dispersal of invasive emerald ash borer, Agrilus planipennis (Coleoptera) in North AmericaDiver Distrib200612717910.1111/j.1366-9516.2006.00218.x
– reference: DavidGGiffardBPiouDRoquesAJactelHPotential effects of climate warming on the survivorship of adult Monochamus galloprovincialisAgr For Entomol20171919219910.1111/afe.12200
– reference: MietkiewiczNKulakowskiDRelative importance of climate and mountain pine beetle outbreaks on the occurrence of large wildfires in the western USAEcol Appl2016262523253510.1002/eap.1400
– reference: BjörklundNLindelöwÅSchroederLMErroneous conclusions about current geographical distribution and future expansion of forest insects in northern Sweden: comments on Hof and Svahlin (2015)Scand J for Res20163112612710.1080/02827581.2015.1086018
– reference: OvaskainenOSkorokhodovaSYakovlevaMSukhovAKutenkovAKutenkovaNShcherbakovAMeykeEDel Mar DelgadoMCommunity-level phenological response to climate changeProc Natl Acad Sci U S A2013110134341343910.1073/pnas.1305533110
– reference: AroraVKPengYKurzWAFyfeJCHawkinsBWernerATPotential near-future carbon uptake overcomes losses from a large insect outbreak in British ColumbiaCanada Geophys Res Lett2016432590259810.1002/2015GL0675321:CAS:528:DC%2BC28Xmt12ns7s%3D
– reference: VoolmaKHiiesaarKWilliamsIHPloomiAJõgarKCold hardiness in the pre-imaginal stages of the great web-spinning pine-sawfly Acantholyda posticalisAgr For Entomol.20161843243610.1111/afe.12172
– reference: PéréCJactelHKenisMResponse of insect parasitism to elevation depends on host and parasitoid life-history strategiesBiol Lett201392013002810.1098/rsbl.2013.0028
– reference: RobsonJRMConciatoriFTardifJCKnowlesKTree-ring response of jack pine and scots pine to budworm defoliation in Central CanadaFor Ecol Manag2015347839510.1016/j.foreco.2015.03.018
– reference: JepsenJUBiuwMImsRAKapariLSchottTVindstadOPLHagenSBEcosystem impacts of a range expanding forest defoliator at the forest-tundra ecotoneEcosystems20131656157510.1007/s10021-012-9629-9Demonstrates the cascading effects of climate-induced outbreak of forest defoliators on northern ecosystem dynamics.
– reference: • Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke, J.A., Kolb, T.E. Responses of tree-killing bark beetles to a changing climate. In: Bjorkman C, Niemela P. Climate change and insect pests. 2015. CAB international; pp. 173-201. An overview of relationships between climate change and bark beetle outbreaks.
– reference: MyersJHSarfrazRMImpacts of insect herbivores on plant populationsAnnu Rev Entomol20176220723010.1146/annurev-ento-010715-0238261:CAS:528:DC%2BC28XhslyksLbJ
– reference: KarlsenSRJepsenJUOdlandAImsRAElvebakkAOutbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communitiesOecologia201317385987010.1007/s00442-013-2648-1
– reference: BaierPPennerstorferJSchopfAPHENIPS—a comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestationFor Ecol Manag200724917118610.1016/j.foreco.2007.05.020
– reference: PriceDTAlfaroRIBrownKJFlanniganMDFlemingRAHoggEHGirardinMPLakustaTJohnstonMMcKenneyDWPedlarJHStrattonTSturrockRNThompsonIDTrofymowJAVenierLAAnticipating the consequences of climate change for Canada’s boreal forest ecosystemsEnviron Rev20132132236510.1139/er-2013-0042
– reference: WilliamsCAGuHMacLeanRMasekJGCollatzGJDisturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects, and droughtsGlob Planet Chang2016143668010.1016/j.gloplacha.2016.06.002
– reference: TurchinPTaylorADReeveJDDynamical role of predators in population cycles of a forest insect: an experimental testScience19992851068107110.1126/science.285.5430.10681:CAS:528:DyaK1MXlt1Gnu70%3D
– reference: KlapwijkMJCsókaGHirkaABjörkmanCForest insects and climate change: long-term trends in herbivore damageEcol Evol.201334183419610.1002/ece3.717
– reference: RoquesAAuger-RozenbergM-ABlackburnTMGarnasJPyšekPRabitschWRichardsonDMWingfieldMJLiebholdAMDuncanRPTemporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 yearsBiol Invas20161890792010.1007/s10530-016-1080-y
– reference: KozlovMVZverevVZverevaELCombined effects of environmental disturbance and climate warming on insect herbivory in mountain birch in subarctic forests: results of 26-year monitoringSci Tot Environ2017601–60280281110.1016/j.scitotenv.2017.05.2301:CAS:528:DC%2BC2sXpt12lt7c%3D
– reference: BarredoJIStronaGde RigoDCaudulloGStancanelliGSan-Miguel-AyanzJAssessing the potential distribution of insect pests: case studies on large pine weevil (Hylobius abietis L) and horse-chestnut leaf miner (Cameraria ohridella) under present and future climate conditions in European forestsEPPO Bulletin20154527328110.1111/epp.12208
– reference: BentzBJDuncanJPPowellJAElevational shifts in thermal suitability for mountain pine beetle population growth in a changing climateForestry20168927128310.1093/forestry/cpv054
– reference: BuffoEBattistiAStastnyMLarssonSTemperature as a predictor of survival of the pine processionary moth in the Italian alpsAgric For Entomol20079657210.1111/j.1461-9563.2006.00321.x
– reference: EFSA and Panel on Plant HealthRisk assessment of the oriental chestnut gall wasp, Dryocosmus kuriphilus for the EU territory on request from the European CommissionEFSA J201081114
– reference: LoganJAMacfarlaneWWWillcoxLWhitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the greater Yellowstone ecosystemEcol Appl20102089590210.1890/09-0655.1
– reference: KivimäenpääMGhimireRPSutinenSHäikiöEKasurinenAHolopainenTHolopainenJKIncreases in volatile organic compound emissions of scots pine in response to elevated ozone and warming are modified by herbivory and soil nitrogen availabilityEur J For Res201613534336010.1007/s10342-016-0939-x1:CAS:528:DC%2BC28XitFCjtrg%3D
– reference: LeppanenCSimberloffDImplications of early production in an invasive forest pestAgr For Entomol.20171921722410.1111/afe.12198
– reference: SaulnierMRoquesAGuibalFRozenbergPSaraccoGCoronaCEdouardJ-LSpatiotemporal heterogeneity of larch budmoth outbreaks in the French Alps over the last 500 yearsCan J For Res20174766768010.1139/cjfr-2016-0211
– reference: JanesJKLiYKeelingCIYuenMMSBooneCKCookeJEKBohlmannJHuberDPWMurrayBWColtmanDWSperlingFAHHow the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian rocky mountainsMol Biol Evol2014311803181510.1093/molbev/msu1351:CAS:528:DC%2BC2cXhtFShs7vI
– reference: WainhouseDInwardDJGMorganGModelling geographical variation in voltinism of Hylobius abietis under climate change and implications for managementAgr For Entomol.20141613614610.1111/afe.12043
– reference: AndereggWRLHickeJAFisherRAAllenCDAukemaJBentzBHoodSLichsteinJWMacaladyAKMcdowellNPanYRaffaKSalaAShawJDStephensonNLTagueCZeppelMTree mortality from drought, insects, and their interactions in a changing climateNew Phytol201520867468310.1111/nph.13477
– reference: JamiesonMASchwartzbergEGRaffaKFReichPBLindrothRLExperimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivoreGlob Chang Biol2015212698271010.1111/gcb.12842
– reference: GrayDRQuantifying the sources of epistemic uncertainty in model predictions of insect disturbances in an uncertain climateAnn For Sci2017744810.1007/s13595-017-0645-y
– reference: ChungHMuraokaHNakamuraMHanSMullerOSonYExperimental warming studies on tree species and forest ecosystems: a literature reviewJ Plant Res201312644746010.1007/s10265-013-0565-3
– reference: BattistiAStastnyMNethererSRobinetCSchopfARoquesALarssonSExpansion of geographic range in pine processionary moth caused by increasing winter temperaturesEcol Appl2005152084209610.1890/04-1903
– reference: SidderAMKumarSLaituriMSiboldJSUsing spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetleEcosphere20167e0139610.1002/ecs2.1396
– reference: SachetJ-MPoncetBRoquesADesprésLAdaptive radiation through phenological shift: the importance of the temporal niche in species diversificationEcol Entomol.200934818910.1111/j.1365-2311.2008.01045.x
– reference: WilliamsDWLiebholdAMClimate change and the outbreak ranges of two north American bark beetlesAgric For Entomol20024879910.1046/j.1461-9563.2002.00124.x
– reference: Christensen JH, Hewitson B, Busuioc A et al. Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. Editors. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge; 2007. pp. 847–940.
– reference: GherlendaANMooreBDHaighAMJohnsonSNRieglerMInsect herbivory in a mature eucalyptus woodland canopy depends on leaf phenology but not CO2 enrichmentBMC Ecol2016164710.1186/s12898-016-0102-z
– reference: ZverevaELHunterMDZverevVKozlovMVFactors affecting population dynamics of leaf beetles in a subarctic region: the interplay between climate warming and pollution declineSci Tot Environ2016566-5671277128810.1016/j.scitotenv.2016.05.1871:CAS:528:DC%2BC28XhtlSlsrrM
– reference: EsperJBüntgenUFrankDCNievergeltDLiebholdA1200 years of regular outbreaks in alpine insectsProc Royal Soc Biol Sci200727467167910.1098/rspb.2006.0191
– reference: ValtonenAMollemanFChapmanCACareyJRAyresMPRoininenHTropical phenology: bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblageEcosphere.2013412810.1890/ES12-00338.1
– reference: • Battisti A, Larsson S. Climate change and insect pest distribution range. In: Bjorkman C and Niemela P. Editors. Climate change and insect pests. CAB international; 2015. p. 1–15. Provides conceptual framework for the study of range expansion of insects in relation to climate change.
– reference: Flower A, Gavin DG, Heyerdahl EK, Parsons RA, Cohn GM. Western spruce budworm outbreaks did not increase fire risk over the last three centuries: a dendrochronological analysis of inter-disturbance synergism. PLoS One 2014; 9.
– reference: BattistiAPehKS-HCorlettRTBergeronYInsects in forest ecosystemsRoutledge handbook of forest ecology2015RoutledgeOxon215225
– reference: RobinetCImbertCERousseletJSauvardDGarciaJGoussardFRoquesAHuman-mediated long-distance jumps of the pine processionary moth in EuropeBiol Invas201214155710.1007/s10530-011-9979-9
– volume: 47
  start-page: 667
  year: 2017
  ident: 75_CR93
  publication-title: Can J For Res
  doi: 10.1139/cjfr-2016-0211
– volume: 8
  start-page: 7
  year: 2015
  ident: 75_CR143
  publication-title: J Asia-Pac Biodivers
  doi: 10.1016/j.japb.2015.01.001
– volume: 175
  start-page: 1041
  year: 2014
  ident: 75_CR37
  publication-title: Oecologia
  doi: 10.1007/s00442-014-2960-4
– volume: 58
  start-page: 501
  year: 2008
  ident: 75_CR10
  publication-title: Bioscience
  doi: 10.1641/B580607
– volume: 39
  start-page: 323
  year: 1999
  ident: 75_CR30
  publication-title: Amer Zool
  doi: 10.1093/icb/39.2.323
– volume: 14
  start-page: 348
  year: 2012
  ident: 75_CR100
  publication-title: Agr For Entomol.
  doi: 10.1111/j.1461-9563.2012.00575.x
– volume: 16
  start-page: 136
  year: 2014
  ident: 75_CR114
  publication-title: Agr For Entomol.
  doi: 10.1111/afe.12043
– volume: 343
  start-page: 73
  year: 2015
  ident: 75_CR142
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2015.01.028
– volume: 349
  start-page: 823
  year: 2015
  ident: 75_CR8
  publication-title: Science
  doi: 10.1126/science.aaa9933
– volume: 7
  start-page: 553
  year: 2014
  ident: 75_CR138
  publication-title: Insect Conserv Diver
  doi: 10.1111/icad.12078
– volume: 16
  start-page: 561
  year: 2013
  ident: 75_CR25
  publication-title: Ecosystems
  doi: 10.1007/s10021-012-9629-9
– volume: 76
  start-page: 395
  year: 2017
  ident: 75_CR5
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate3303
– volume: 566-567
  start-page: 1277
  year: 2016
  ident: 75_CR81
  publication-title: Sci Tot Environ
  doi: 10.1016/j.scitotenv.2016.05.187
– volume: 287
  start-page: 67
  year: 2013
  ident: 75_CR88
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2012.09.006
– volume: 292
  start-page: 1
  year: 2013
  ident: 75_CR97
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2012.12.018
– volume: 118
  start-page: 1121
  year: 2009
  ident: 75_CR107
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2009.17558.x
– volume: 122
  start-page: 930
  year: 2017
  ident: 75_CR13
  publication-title: J Geophys Res Biogeosci
  doi: 10.1002/2016JG003622
– volume: 41
  start-page: 653
  year: 2016
  ident: 75_CR33
  publication-title: Ecol Entomol.
  doi: 10.1111/een.12324
– volume: 9
  start-page: 65
  year: 2007
  ident: 75_CR72
  publication-title: Agric For Entomol
  doi: 10.1111/j.1461-9563.2006.00321.x
– volume: 249
  start-page: 171
  year: 2007
  ident: 75_CR99
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2007.05.020
– volume: 20
  start-page: 2004
  year: 2014
  ident: 75_CR26
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12506
– volume: 52
  start-page: 37
  year: 2007
  ident: 75_CR108
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.ento.52.110405.091418
– volume: 21
  start-page: 97
  year: 2015
  ident: 75_CR89
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12692
– volume: 79
  start-page: 3468
  year: 2013
  ident: 75_CR58
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00068-13
– volume: 22
  start-page: 1595
  year: 2016
  ident: 75_CR70
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.13142
– volume: 16
  start-page: 111
  year: 2014
  ident: 75_CR141
  publication-title: Agr For Entomol.
  doi: 10.1111/afe.12040
– volume: 14
  start-page: 1557
  year: 2012
  ident: 75_CR50
  publication-title: Biol Invas
  doi: 10.1007/s10530-011-9979-9
– volume: 35
  start-page: 211
  year: 2012
  ident: 75_CR111
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2011.06847.x
– ident: 75_CR96
  doi: 10.1371/journal.pone.0176269
– volume: 60
  start-page: 602
  year: 2010
  ident: 75_CR16
  publication-title: Bioscience
  doi: 10.1525/bio.2010.60.8.6
– volume: 53
  start-page: 335
  year: 2015
  ident: 75_CR21
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev-phyto-080614-120207
– ident: 75_CR1
  doi: 10.1017/CBO9781107415379.004
– volume: 22
  start-page: 3632
  year: 2016
  ident: 75_CR104
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.13334
– volume: 11
  start-page: 321
  year: 2017
  ident: 75_CR140
  publication-title: Front Earth Sci
  doi: 10.1007/s11707-016-0582-3
– volume: 31
  start-page: 29
  year: 2016
  ident: 75_CR73
  publication-title: Scand J For Res
  doi: 10.1080/02827581.2015.1052751
– volume: 39
  start-page: 179
  year: 1994
  ident: 75_CR115
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.en.39.010194.001143
– volume: 3
  start-page: 2783
  year: 2013
  ident: 75_CR121
  publication-title: Ecol Evol
  doi: 10.1002/ece3.665
– volume: 43
  start-page: 2590
  year: 2016
  ident: 75_CR130
  publication-title: Canada Geophys Res Lett
  doi: 10.1002/2015GL067532
– volume: 89
  start-page: 271
  year: 2016
  ident: 75_CR62
  publication-title: Forestry
  doi: 10.1093/forestry/cpv054
– volume: 19
  start-page: 192
  year: 2017
  ident: 75_CR98
  publication-title: Agr For Entomol
  doi: 10.1111/afe.12200
– volume: 362
  start-page: 241
  year: 2016
  ident: 75_CR39
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2015.11.045
– start-page: 215
  volume-title: Routledge handbook of forest ecology
  year: 2015
  ident: 75_CR132
– volume: 31
  start-page: 1803
  year: 2014
  ident: 75_CR60
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msu135
– volume: 41
  start-page: 1948
  year: 2011
  ident: 75_CR17
  publication-title: Can J For Res
  doi: 10.1139/x11-134
– volume: 121
  start-page: 701
  year: 2013
  ident: 75_CR92
  publication-title: Climat Chang
  doi: 10.1007/s10584-013-0966-2
– volume: 7
  start-page: 967
  year: 2004
  ident: 75_CR19
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2004.00659.x
– volume: 54
  start-page: 28
  year: 2017
  ident: 75_CR149
  publication-title: J Appl Ecol
  doi: 10.1111/1365-2664.12644
– ident: 75_CR3
– volume: 19
  start-page: 891
  year: 2015
  ident: 75_CR125
  publication-title: J Insect Conserv
  doi: 10.1007/s10841-015-9806-1
– volume: 27
  start-page: 780
  year: 2016
  ident: 75_CR127
  publication-title: J Veget Sci
  doi: 10.1111/jvs.12410
– volume: 268
  start-page: 289
  year: 2001
  ident: 75_CR83
  publication-title: Proc Royal Soc Lond B – Biol Sci
  doi: 10.1098/rspb.2000.1363
– volume: 16
  start-page: 329
  year: 2014
  ident: 75_CR76
  publication-title: Biol Invas.
  doi: 10.1007/s10530-013-0521-0
– volume: 20
  start-page: 895
  year: 2010
  ident: 75_CR134
  publication-title: Ecol Appl
  doi: 10.1890/09-0655.1
– volume: 41
  start-page: 174
  year: 2015
  ident: 75_CR24
  publication-title: Paleobiol
  doi: 10.1017/pab.2014.11
– ident: 75_CR91
  doi: 10.1007/978-94-017-9340-7
– volume: 42
  start-page: 200
  year: 2017
  ident: 75_CR112
  publication-title: Phys Entomol
  doi: 10.1111/phen.12200
– volume: 47
  start-page: 1
  year: 2013
  ident: 75_CR122
  publication-title: Silva Fennica
  doi: 10.14214/sf.964
– ident: 75_CR32
  doi: 10.1016/j.foreco.2016.04.051
– volume: 143
  start-page: 66
  year: 2016
  ident: 75_CR14
  publication-title: Glob Planet Chang
  doi: 10.1016/j.gloplacha.2016.06.002
– volume: 126
  start-page: 447
  year: 2013
  ident: 75_CR36
  publication-title: J Plant Res
  doi: 10.1007/s10265-013-0565-3
– volume: 62
  start-page: 207
  year: 2017
  ident: 75_CR35
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev-ento-010715-023826
– volume: 299
  start-page: 35
  year: 2013
  ident: 75_CR126
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2012.12.033
– volume: 381
  start-page: 347
  year: 2016
  ident: 75_CR150
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2016.09.044
– volume: 31
  start-page: 126
  year: 2016
  ident: 75_CR74
  publication-title: Scand J for Res
  doi: 10.1080/02827581.2015.1086018
– volume: 47
  start-page: 160
  year: 2001
  ident: 75_CR110
  publication-title: Am Entomol
  doi: 10.1093/ae/47.3.160
– volume: 9
  start-page: 711
  year: 2016
  ident: 75_CR124
  publication-title: Contemp Prob Ecol
  doi: 10.1134/S199542551606007X
– volume: 19
  start-page: 217
  year: 2017
  ident: 75_CR31
  publication-title: Agr For Entomol.
  doi: 10.1111/afe.12198
– volume: 32
  start-page: 95
  year: 2017
  ident: 75_CR137
  publication-title: Scand J For Res
  doi: 10.1080/02827581.2016.1195867
– volume: 4
  start-page: 87
  year: 2002
  ident: 75_CR9
  publication-title: Agric For Entomol
  doi: 10.1046/j.1461-9563.2002.00124.x
– volume: 28
  start-page: 380
  year: 2003
  ident: 75_CR109
  publication-title: Ecol Entomol.
  doi: 10.1046/j.1365-2311.2003.00509.x
– volume: 13
  start-page: 5277
  year: 2016
  ident: 75_CR131
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-5277-2016
– ident: 75_CR41
  doi: 10.1079/9781780643786.0001
– volume: 173
  start-page: 859
  year: 2013
  ident: 75_CR123
  publication-title: Oecologia
  doi: 10.1007/s00442-013-2648-1
– volume: 20
  start-page: 39
  year: 2017
  ident: 75_CR34
  publication-title: Curr Opin Insect Sci
  doi: 10.1016/j.cois.2017.03.006
– start-page: 533
  volume-title: Bark beetles
  year: 2015
  ident: 75_CR63
  doi: 10.1016/B978-0-12-417156-5.00013-7
– volume: 8
  start-page: 335
  year: 2002
  ident: 75_CR66
  publication-title: Diver Distrib.
  doi: 10.1046/j.1472-4642.2002.00159.x
– volume: 21
  start-page: 2698
  year: 2015
  ident: 75_CR38
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12842
– volume: 102
  start-page: 17384
  year: 2005
  ident: 75_CR106
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0508839102
– volume: 110
  start-page: 13434
  year: 2013
  ident: 75_CR136
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1305533110
– volume: 14
  start-page: 1571
  year: 2012
  ident: 75_CR44
  publication-title: Biol Invas.
  doi: 10.1007/s10530-010-9918-1
– ident: 75_CR48
  doi: 10.1111/phen
– volume: 172
  start-page: 141
  year: 2013
  ident: 75_CR12
  publication-title: Oecologia
  doi: 10.1007/s00442-012-2474-x
– volume: 274
  start-page: 671
  year: 2007
  ident: 75_CR51
  publication-title: Proc Royal Soc Biol Sci
  doi: 10.1098/rspb.2006.0191
– volume: 17
  start-page: 882
  year: 2007
  ident: 75_CR55
  publication-title: Ecol Appl
  doi: 10.1890/06-0512
– volume: 45
  start-page: 273
  year: 2015
  ident: 75_CR65
  publication-title: EPPO Bulletin
  doi: 10.1111/epp.12208
– volume: 110
  start-page: 2193
  year: 2013
  ident: 75_CR59
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1216666110
– volume: 74
  start-page: 48
  year: 2017
  ident: 75_CR45
  publication-title: Ann For Sci
  doi: 10.1007/s13595-017-0645-y
– volume: 347
  start-page: 83
  year: 2015
  ident: 75_CR80
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2015.03.018
– volume: 20
  start-page: 1723
  year: 2014
  ident: 75_CR135
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12529
– volume: 115
  start-page: 327
  year: 2012
  ident: 75_CR113
  publication-title: Climat Chang.
  doi: 10.1007/s10584-012-0463-z
– volume: 4
  start-page: 1
  year: 2013
  ident: 75_CR148
  publication-title: Ecosphere.
  doi: 10.1890/ES12-00338.1
– ident: 75_CR43
– volume: 60
  start-page: 434
  year: 2014
  ident: 75_CR61
  publication-title: For Sci
  doi: 10.5849/forsci.13-056
– volume: 95
  start-page: 9
  year: 2014
  ident: 75_CR139
  publication-title: Ecology
  doi: 10.1890/13-0760.1
– volume: 36
  start-page: 1138
  year: 2013
  ident: 75_CR101
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2013.00272.x
– volume: 18
  start-page: 907
  year: 2016
  ident: 75_CR78
  publication-title: Biol Invas
  doi: 10.1007/s10530-016-1080-y
– volume: 12
  start-page: 71
  year: 2006
  ident: 75_CR53
  publication-title: Diver Distrib
  doi: 10.1111/j.1366-9516.2006.00218.x
– ident: 75_CR128
  doi: 10.1088/1748-9326/11/4/045008
– volume: 285
  start-page: 1068
  year: 1999
  ident: 75_CR146
  publication-title: Science
  doi: 10.1126/science.285.5430.1068
– volume: 9
  start-page: 526
  year: 2008
  ident: 75_CR133
  publication-title: Ecol Appl
  doi: 10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2
– volume: 19
  start-page: 1163
  year: 2015
  ident: 75_CR145
  publication-title: J Insect Conserv
  doi: 10.1007/s10841-015-9831-0
– volume: 26
  start-page: 1133
  year: 1999
  ident: 75_CR54
  publication-title: J Biogeogr
  doi: 10.1046/j.1365-2699.1999.00363.x
– volume: 18
  start-page: 432
  year: 2016
  ident: 75_CR85
  publication-title: Agr For Entomol.
  doi: 10.1111/afe.12172
– volume: 159
  start-page: 527
  year: 2009
  ident: 75_CR117
  publication-title: Oecologia
  doi: 10.1007/s00442-008-1233-5
– ident: 75_CR2
– volume: 44
  start-page: 565
  year: 2013
  ident: 75_CR11
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev-ecolsys-110512-135858
– volume: 3
  start-page: 4183
  year: 2013
  ident: 75_CR27
  publication-title: Ecol Evol.
  doi: 10.1002/ece3.717
– volume: 77
  start-page: 257
  year: 2008
  ident: 75_CR46
  publication-title: J Anim Ecol
  doi: 10.1111/j.1365-2656.2007.01339.x
– volume: 15
  start-page: 2084
  year: 2005
  ident: 75_CR49
  publication-title: Ecol Appl
  doi: 10.1890/04-1903
– volume: 21
  start-page: 322
  year: 2013
  ident: 75_CR4
  publication-title: Environ Rev
  doi: 10.1139/er-2013-0042
– volume: 396
  start-page: 11
  year: 2017
  ident: 75_CR71
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2017.04.008
– ident: 75_CR77
  doi: 10.1007/s10144-017-0589-y
– volume: 208
  start-page: 674
  year: 2015
  ident: 75_CR7
  publication-title: New Phytol
  doi: 10.1111/nph.13477
– volume: 16
  start-page: 460
  year: 2007
  ident: 75_CR42
  publication-title: Glob Ecol Biogeog
  doi: 10.1111/j.1466-8238.2006.00302.x
– volume: 83
  start-page: 441
  year: 2013
  ident: 75_CR20
  publication-title: Ecol Monogr
  doi: 10.1890/13-0160.1
– volume: 27
  start-page: 532
  year: 2017
  ident: 75_CR120
  publication-title: Canada Ecol Appl
  doi: 10.1002/eap.1463
– volume: 135
  start-page: 343
  year: 2016
  ident: 75_CR84
  publication-title: Eur J For Res
  doi: 10.1007/s10342-016-0939-x
– volume: 37
  start-page: 212
  year: 2012
  ident: 75_CR47
  publication-title: Ecol Entomol.
  doi: 10.1111/j.1365-2311.2012.01358.x
– volume: 452
  start-page: 987
  year: 2008
  ident: 75_CR6
  publication-title: Nature
  doi: 10.1038/nature06777
– volume: 8
  start-page: 329
  year: 2014
  ident: 75_CR87
  publication-title: Arthropod-Plant Interact
– volume: 16
  start-page: 47
  year: 2016
  ident: 75_CR105
  publication-title: BMC Ecol
  doi: 10.1186/s12898-016-0102-z
– volume: 601–602
  start-page: 802
  year: 2017
  ident: 75_CR102
  publication-title: Sci Tot Environ
  doi: 10.1016/j.scitotenv.2017.05.230
– volume: 39
  start-page: 1112
  year: 2012
  ident: 75_CR56
  publication-title: J Biogeogr
  doi: 10.1111/j.1365-2699.2011.02673.x
– volume: 15
  start-page: 212
  year: 2013
  ident: 75_CR64
  publication-title: Agr For Entomol.
  doi: 10.1111/afe.12007
– volume: 71
  start-page: 149
  year: 2014
  ident: 75_CR22
  publication-title: Ann For Sci
  doi: 10.1007/s13595-013-0287-7
– volume: 42
  start-page: 1264
  year: 2012
  ident: 75_CR28
  publication-title: Can J For Res
  doi: 10.1139/x2012-069
– volume: 38
  start-page: 201
  year: 2013
  ident: 75_CR90
  publication-title: Ecol Entomol
  doi: 10.1111/een.12005
– volume: 26
  start-page: 2523
  year: 2016
  ident: 75_CR129
  publication-title: Ecol Appl
  doi: 10.1002/eap.1400
– volume: 22
  start-page: 472
  year: 2012
  ident: 75_CR69
  publication-title: Ecol Appl
  doi: 10.1890/11-0009.1
– volume: 8
  start-page: 1
  year: 2010
  ident: 75_CR67
  publication-title: EFSA J
– ident: 75_CR86
  doi: 10.1371/journal.pone.0114282
– volume: 96
  start-page: 1480
  year: 2015
  ident: 75_CR18
  publication-title: Ecology
  doi: 10.1890/13-2366.1
– volume: 335
  start-page: 40
  year: 2013
  ident: 75_CR147
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2013.06.012
– volume: 22
  start-page: 2329
  year: 2016
  ident: 75_CR29
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.13160
– volume: 13
  start-page: e1002323
  year: 2015
  ident: 75_CR40
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002323
– volume: 9
  start-page: 20130028
  year: 2013
  ident: 75_CR144
  publication-title: Biol Lett
  doi: 10.1098/rsbl.2013.0028
– volume: 7
  start-page: e01396
  year: 2016
  ident: 75_CR57
  publication-title: Ecosphere
  doi: 10.1002/ecs2.1396
– volume: 17
  start-page: 48
  year: 2015
  ident: 75_CR103
  publication-title: Agr For Entomol.
  doi: 10.1111/afe.12079
– ident: 75_CR118
  doi: 10.1139/cjfr-2014-0385
– volume: 12
  start-page: 662
  year: 2006
  ident: 75_CR23
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2006.01124.x
– ident: 75_CR82
  doi: 10.1111/een.12400
– volume: 86
  start-page: 590
  year: 2017
  ident: 75_CR94
  publication-title: J Anim Ecol
  doi: 10.1111/1365-2656.12647
– volume: 13
  start-page: 541
  year: 2008
  ident: 75_CR68
  publication-title: Mitig Adapt Strat Glob Change
  doi: 10.1007/s11027-007-9127-0
– volume: 31
  start-page: 128
  year: 2016
  ident: 75_CR75
  publication-title: Scand J For Res
  doi: 10.1080/02827581.2015.1079644
– volume: 213
  start-page: 53
  year: 2015
  ident: 75_CR79
  publication-title: Canada Agr For Meteorol
  doi: 10.1016/j.agrformet.2015.06.014
– volume: 34
  start-page: 81
  year: 2009
  ident: 75_CR116
  publication-title: Ecol Entomol.
  doi: 10.1111/j.1365-2311.2008.01045.x
– volume: 4
  start-page: 2384
  year: 2014
  ident: 75_CR119
  publication-title: Ecol Evol.
  doi: 10.1002/ece3.988
– volume: 107
  start-page: 20576
  year: 2010
  ident: 75_CR52
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1010270107
– volume: 178–179
  start-page: 120
  year: 2013
  ident: 75_CR95
  publication-title: Agr For Meteorol
  doi: 10.1016/j.agrformet.2013.04.015
– ident: 75_CR15
  doi: 10.1079/9781780643786.0173
SSID ssj0002710234
Score 2.5274467
SecondaryResourceType review_article
Snippet Purpose of Review Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this...
Purpose of ReviewClimate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this...
PURPOSE OF REVIEW: Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013–2017) on this...
Purpose of Review Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent literature (2013-2017) on this...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Abundance
Bark
bark beetles
Beetles
climate
Climate change
Climate effects
Climate models
defoliating insects
Earth and Environmental Science
Ecology
Ecosystem assessment
Environment
Environmental changes
Environmental impact
Environmental Management
Environmental Sciences
Forest ecosystems
Forest Entomology (E Brockerhoff
forest insects
Forestry
Forestry Management
Forests
Global Changes
Guilds
insect communities
Insects
Nature Conservation
Outbreaks
Pest outbreaks
Pests
Range extension
Section Editor
Species
Sustainable Development
temperature
Topical Collection on Forest Entomology
Trophic relationships
winter
Title Forest Insects and Climate Change
URI https://link.springer.com/article/10.1007/s40725-018-0075-6
https://www.proquest.com/docview/2039940105
https://www.proquest.com/docview/2084051490
https://hal.inrae.fr/hal-02629304
Volume 4
WOSCitedRecordID wos000432549800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 2198-6436
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710234
  issn: 2198-6436
  databaseCode: RSV
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS8MwED-cL_ziW6xO6cRPSiBtsqb5KLKhMIb4Yt9Km6U4GJ24Kfjfe9eXD1TQb6W9hPRyyf0ud7kDOEYMHARGSSZFLBhKiGDhkCeMhzbUkszmIklST_X74WCgr8p73NMq2r1ySeY7dX3ZjVJ5UaBZyEjPsaABC6jtQlqN1zf39cGKTzpTyMqD-V3LTzqo8UARkB_g5RePaK5oumv_GuI6rJa40j0rBGED5my2CUudPCf16yYsUwlOquu2Ba3i0b3MphTJ4cbZ0D0fjxC5Wre4a7ANd93O7fkFKwslMIMKdsa00t4wiRViGc_odqo93yhu09iTCW8bLYxKjTZc8zQIrFWpNSq2IvWHsUeeWrED89kks7vgYj8W904jE5FItC0TbRBihGkivMC2FXeAV6yLTJlFnIpZjKM6_3HOhAiZEBETosCBk7rJY5FC4zfiI5yPmo6SX1-c9SJ6h9YiYhMuXzwHmtV0ReWSm0Y-R6wlqeCnA636My4W8oDEmZ08Ew3aswgRNf7HaTWF7138OKq9P1Hvw4qfywCd1TRhfvb0bA9g0bzMRtOnw1xa3wDGBt9Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB689cVbXM8qPimBtMk2zaOIsuK6iBe-hTaboiBV3AP898708kAFfSvtJKSTSeabzGQGYA8xcBhaJZkUsWAoIYJFXZ4wHrlISzKbiyRJbdXpRHd3-qK8x92rot0rl2S-U9eX3SiVFwWaRYz0HAtHYVyiwqI4vsur2_pgJSCdKWTlwfyu5ScdNHpPEZAf4OUXj2iuaE7m_jXEeZgtcaV3WAjCAoy4bBEmj_Oc1K-LMEUlOKmu2xLsFI_eadajSA4vzrre0eMDIlfnFXcNluHm5Pj6qMXKQgnMooLtM620301ihVjGt7qZaj-wirs09mXCm1YLq1KrLdc8DUPnVOqsip1Ig27sk6dWrMBY9pS5VfCwH4d7p5WJSCTalom2CDGiNBF-6JqKN4BXrDO2zCJOxSweTZ3_OGeCQSYYYoIJG7BfN3kuUmj8RryL81HTUfLr1mHb0Du0FhGbcDn0G7BRTZcpl1zPBByxlqSCnw3YqT_jYiEPSJy5pwHRoD2LEFHjfxxUU_jexY-jWvsT9TZMt67P26Z92jlbh5kglwc6t9mAsf7LwG3ChB32H3ovW7nkvgFF9OI0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB688cVbXM8qPilh0ybbNI-iLorLInjgW2jTFAWp4q6C_96ZXh6oIL6VdhLayaTzTSb5BmAXMXAYWiWZFLFgaCGCRSlPGI9cpCWFzSVJUk_1-9HNjT6v6pwO6t3udUqyPNNALE35sP2YZu3m4BvRetGms4iRz2PhKIxLqhlE4frFdbPIEpD_FLLOZn7X8pM_Gr2l3ZAfoOaX7GjhdLqz_37dOZip8KZ3UBrIPIy4fAEmjwuu6tcFmKLSnFTvbRG2y0vvNB_QDg8vzlPv8P4OEa3zyjMIS3DVPb48PGFVAQVm0fEOmVbaT5NYIcbxre5k2g-s4i6LfZnwjtXCqsxqyzXPwtA5lTmrYieyII19yuCKZRjLH3K3Ah724_CfamUiEokxZ6ItQo8oS4Qfuo7iLeC1Go2t2MWpyMW9aXiRCyUYVIIhJZiwBXtNk8eSWuM34R0cm0aOSLFPDnqG7mEUiZiFyxe_Bev10JlqKg5MwBGDSSoE2oLt5jFOIsqMxLl7eCYZjHMROmr8jv16ON-7-PGtVv8kvQVT50dd0zvtn63BdFCYAy3nrMPY8OnZbcCEfRneDZ42CyN-A0pJ6xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forest+Insects+and+Climate+Change&rft.jtitle=Current+forestry+reports&rft.au=Pureswaran%2C+Deepa+S.&rft.au=Roques%2C+Alain&rft.au=Battisti%2C+Andrea&rft.date=2018-06-01&rft.issn=2198-6436&rft.eissn=2198-6436&rft.volume=4&rft.issue=2&rft.spage=35&rft.epage=50&rft_id=info:doi/10.1007%2Fs40725-018-0075-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40725_018_0075_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6436&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6436&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6436&client=summon