Soundness and Completeness Proofs by Coinductive Methods

We show how codatatypes can be employed to produce compact, high-level proofs of key results in logic: the soundness and completeness of proof systems for variations of first-order logic. For the classical completeness result, we first establish an abstract property of possibly infinite derivation t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of automated reasoning Jg. 58; H. 1; S. 149 - 179
Hauptverfasser: Blanchette, Jasmin Christian, Popescu, Andrei, Traytel, Dmitriy
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.01.2017
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0168-7433, 1573-0670
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show how codatatypes can be employed to produce compact, high-level proofs of key results in logic: the soundness and completeness of proof systems for variations of first-order logic. For the classical completeness result, we first establish an abstract property of possibly infinite derivation trees. The abstract proof can be instantiated for a wide range of Gentzen and tableau systems for various flavors of first-order logic. Soundness becomes interesting as soon as one allows infinite proofs of first-order formulas. This forms the subject of several cyclic proof systems for first-order logic augmented with inductive predicate definitions studied in the literature. All the discussed results are formalized using Isabelle/HOL’s recently introduced support for codatatypes and corecursion. The development illustrates some unique features of Isabelle/HOL’s new coinductive specification language such as nesting through non-free types and mixed recursion–corecursion.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0168-7433
1573-0670
DOI:10.1007/s10817-016-9391-3